

Updated results from T2K experiment with 3.13x10²¹ POT

Kimihiro OKUMURA (ICRR) for T2K collaboration okumura@icrr.u-tokyo.ac.jp ICRR seminar, January 10th 2019

T2K (Tokai to Kamioka) (2010~)

- Long baseline neutrino oscillation experiment with high intensity muon neutrino beam from J-PARC MR to Super-Kamiokande (Super-K)
- Goals:
 - Precise measurement of v_{μ} disappearance
 - Measurement of v_e appearance \rightarrow Discovery

→ Search for leptonic CP violation (δ_{CP})

• Search for non-standard oscillation, Cross section measurements

T2K collaboration

12countries, ~500 members

TRIUMF U. B. Columbia U. Regina U. Toronto U. Victoria U. Winnipeg York U.

CEA Saclay LLR E. Poly. LPNHE Paris

Aachen U.

INFN, U. Bari INFN, U. Naples INFN, U. Padua INFN, U. Rome ICRR Kamioka ICRR RCCN Kavli IPMU KEK Kobe U. Kyoto U. Miyagi U. Edu. Okayama U. Osaka City U. Tokyo Institute Tech Tokyo Metropolitan U. U. Tokyo Tokyo U. of Science Yokohama National U.

FJ PAN, Cracow NCBJ, Warsaw U. Silesia Katowice U. Warsaw Warsaw U. T. Wroclaw U.

INR IFAE, Barcelona

IFIC, Valencia U. Autonoma Madrid ETH Zurich U. Bern U. Geneva

Imperial C London Lancaster U. Oxford U. Oxford U. Oueen Mary U. London Royal Holloway U. London STFC/Daresbury STFC/RAL U. Glasgow

U. Liverpool

U. Sheffield

U. Warwick

U. of Houston

Boston U. Colorado St U. Duke U. Louisiana State U. Michigan St. U. SLAC Stony Brook U. Stony Brook U. U. C. Irvine U. of Colorado U. of Pittsburgh U. Rochester U. Washington

IFIRSE IOP, VAST

T2K Breakthrough Prize Celebration, 2016

Neutrino Oscillation

$$\begin{aligned} & \left| \begin{array}{c} \mathsf{Flavor state}_{(\text{Interaction})} & \begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} \right| = U_{PMNS} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix} & \begin{array}{c} \text{Mass state}_{(\text{Propagation})} \\ & \\ \mathsf{J}_{PMNS} \end{array} \\ & = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \begin{pmatrix} \cos\theta_{13} & 0 & \sin\theta_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -\sin\theta_{13}e^{i\delta} & 0 & \cos\theta_{13} \end{pmatrix} \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 1 & 0 \end{pmatrix} \\ & \\ & \begin{array}{c} \mathsf{Atmospheric, LBL} \\ & \\ \Delta m_{32}^2 \simeq 2.4 \times 10^{-3} \mathrm{eV}^2 \\ \sin^2\theta_{23} = 0.4 \sim 0.6 \end{array} \right| & \begin{array}{c} \mathrm{sin}^2\theta_{13} \simeq 0.021 \\ & \\ \sin^2\theta_{13} \simeq 0.021 \\ \end{array} \\ & \begin{array}{c} \mathsf{Atmaspheric}_1 = \mathsf{Atmaspheric}_1 = \mathsf{Atmaspheric}_1 \\ & \\ \mathrm{Solar, KamLAND} \\ & \\ & \\ \mathrm{Solar}_1^2 \simeq 7.5 \times 10^{-5} \mathrm{eV}^2 \\ & \\ & \\ \mathrm{Sin}^2\theta_{12} \simeq 0.30 \\ \end{array} \end{aligned}$$

 θ_{23} Octant

Sterile neutrino

4

Neutrino Oscillation in T2K

• Disappearance of muon neutrino $(\theta_{23}, \Delta m^2_{32})$:

$$P(\nu_{\mu} \to \nu_{\mu}) \simeq 1 - (\cos^{4}\theta_{13}\sin^{2}2\theta_{23} + \sin^{2}\theta_{23}\sin^{2}2\theta_{13})\sin^{2}\left(\frac{\Delta m_{32}^{2}L}{4E}\right)$$

\uparrow Leading term

• Appearance of electron neutrino (θ_{13}) and CP measurement (δ_{CP})

$$P(\nu_{\mu} \to \nu_{e}) \simeq \sin^{2} \theta_{23} \sin^{2} 2\theta_{13} \sin^{2} \left(\frac{\Delta m_{32}^{2}L}{4E}\right) \left(1 + \frac{4\sqrt{2}G_{F}n_{e}E}{\Delta m_{31}^{2}}(1 - 2\sin^{2}\theta_{13})\right) \leftarrow \text{Leading term}$$

$$- \sin 2\theta_{12} \sin 2\theta_{23} \sin 2\theta_{13} \cos \theta_{13} \sin \delta \sin \left(\frac{\Delta m_{32}^{2}L}{4E}\right) \sin \left(\frac{\Delta m_{31}^{2}L}{4E}\right) \sin \left(\frac{\Delta m_{21}^{2}L}{4E}\right)$$

$$\land \mathsf{CP violating term}$$

CP effect on electron appearance

- ~25% change at oscillation peak between δ =-1/2 π and 1/2 π
- Opposite direction for neutrino and anti-neutrino
 - → Possible to measure CP by independent v and \overline{v} measurements
- Marginal effect due to neutrino mass hierarchy

T2K experiment

J-PARC Accelerator

Off-Axis Beam

- Neutrino beam are pointed to 2.5° off-axis direction from SK direction
 - Produce intense narrow-band beam
 - Optimize peak energy by off-axis angle (~0.6GeV)
 - Suppress high energy flux (Ev>1GeV) producing v_e backgrounds
- First experiment to utilize off-axis beam

T2K overview

Off-axis (2.5 °) v_{μ} *beam*

- Intense, low energy narrow-band
- Peak E_v tuned for oscillation max. (~0.6 GeV)
- Reduce BG from high energy tail
- Small v_e fraction (~1%)

 Monitor intensity and profile spill-by-spill

On-axis detector (INGRID)

- Monitor v beam day-by-day
- Detector coverage is 10m x 10m

Off-axis detector (ND280)

- Predict interaction rate before oscillation
- UA1 magnet
- Fine grained detector (FGD)
 FGD1: CH target, FGD2: 42% water
- Time projection chamber (TPC), ECAL, POD

Far detector (Super-Kamiokande)

- Water Cherenkov detector (total mass ~50 kton)
- Excellent particle ID for μ / e particle with ~99% efficiency

Beam Power and Accumulated POT

- 3.16 x 10²¹ Proton On Target (POT) accumulated until May 2018
- neutrino: 1.51 x 10²¹ POT, anti-neutrino: 1.65 x 10²¹ POT
- ~30% increase of anti-neutrino data from previous result

Neutrino Beam Stability

Neutrino event rate and direction are stable

Super-K Data Quality

Beam timing

Neutrino Rate Stability

- Data taking is stable and efficient (~1% inefficiency)
- Clear bunch structure in beam timing
- Stable event rates for both v and v mode

Oscillation Analysis

Oscillation Analysis Strategy

Neutrino Flux Predictions

Neutrino Flux Predictions

Near Detector Fit

- Initial uncertainties on flux and cross section are further constrained by ND280 data
- Significant reduction on SK prediction uncertainties

Uncertainties on SK event rate w/ and w/o ND fit

Sample	Pre-fit	Post-fit
v-mode 1Rµ	14.6%	5.1%
⊽-mode 1Rµ	12.5%	4.5%
v -mode 1Re	16.9%	8.8%
⊽-mode 1Re	14.4%	7.1%

Super-K neutrino data sample

Super-K Data

Predictions with: $sin^2\theta_{13}$ =0.0212, $sin^2\theta_{23}$ =0.528, Δm^2_{32} =2.51x10⁻³, NH

Sample	δ=-π/2	δ=0	δ=π/2	δ=π	Obs.
v-mode 1Rµ	272.4	272.0	272.4	272.8	243
⊽-mode 1Rµ	139.5	139.2	139.5	139.9	140
v-mode 1Re	74.4	62.2	50.6	62.7	75
⊽-mode 1Re	17.1	19.6	21.7	19.3	15
v CC1π⁺	7.0	6.1	4.9	5.9	15

21

New \overline{v}_e appearance data

Full Run1-9 Data (~May 2018)

Previous Data (~Dec 2017)

- Number of \overline{v}_e 1Re events: 9 (prev.) \rightarrow 15 events
- Distribution of new data points agrees better with v̄_e signal
- Convincing that T2K is really observing \overline{v}_e appearance

Systematic uncertainties in N_{SK}

	1-Ri	$\mathbf{ng} \ \mu$			1-Ring e	
Error source	FHC	RHC	FHC	RHC	FHC 1 d.e.	FHC/RHC
SK Detector	2.40	2.01	2.83	3.80	13.15	1.47
SK FSI+SI+PN	2.21	1.98	3.00	2.31	11.43	1.57
Flux + Xsec constrained	3.27	2.94	3.24	3.10	4.09	2.67
E _b	2.38	1.72	7.13	3.66	2.95	3.62
$\sigma(\nu_e)/\sigma(\bar{\nu}_e)$	0.00	0.00	2.63	1.46	2.61	3.03
$ m NC1\gamma$	0.00	0.00	1.09	2.60	0.33	1.50
NC Other	0.25	0.25	0.15	0.33	0.99	0.18
Osc	0.03	0.03	2.69	2.49	2.63	0.77
All Systematics	5.12	4.45	8.81	7.13	18.38	5.96
All with osc	5.12	4.45	9.19	7.57	18.51	6.03

Oscillation fit result: θ_{13} **vs \delta_{CP}**

- Update reactor constraint: sin²θ₁₃ = 0.0219 ± 0.0012 → 0.0212 ± 0.0008 (PDG2018) (sin²2θ₁₃ = 0.0857 → 0.0830)
- Preferred $\delta_{CP} \sim -\pi/2$
- Better fit result than sensitivity

Constraint on δ_{CP}

Data (2σ CL)

Sensitivity

- Best fit: $\delta_{CP} = -1.885$ radian
- 2σ confidence interval NH: [-2.966, -0.628], IH: [-1.799, -0.979]
- CP conservation points (δ_{CP} =0, π) are both outside of 2 σ CL

v_e / \overline{v}_e events and $\delta_{CP}/MO/\theta_{23}$ exp'd

V_e Appearance Result (New)

- Test with two analysis methods: "Rate-only" and "Rate + Shape"
- Introduce scaled \overline{v}_{μ} -> \overline{v}_{e} probability:

 $P(\bar{\nu}_{\mu} \to \bar{\nu}_{e}) = \beta \times P_{\text{PMNS}}(\bar{\nu}_{\mu} \to \bar{\nu}_{e})$

(β : 0=no \overline{v}_e appearance, 1=PMNS)

 Rate+shape result excludes no appearance hypothesis by 2σ level though still inconclusive

	Rate-only	Rate+Shape	
No app. (β=0)	0.0686 (1.82σ)	0.0244 (2.25σ)	
PMNS (β=1)	0.246 (1.16σ)	$0.261(1.12\sigma)$	

Future Prospects

Beam Plan and Expected Sensitivity

- Reducing systematic error is necessary
 - ~9% (current) \rightarrow 4% (goal)

- MR PS upgrade in 2020
- Upgrade to 1.3 MW beam by
 - repetition rate (2.48 \rightarrow 1.16 sec)
 - increase proton / pulse (+28%)
- Associated improvement in neutrino beam line

Near Detector Upgrade

- Upgrade for 4% systematic error and 3σ exclusion of CP conservation
- Increase acceptance of large angle scattering and low energy particles

- Highly granular scintillator: detector (Super-FDG)
- High angle TPC (x2) + TOF
- TDR under review

Positron, 1 GeV, B = 0.2 T

Super-K refurbishment and SK-Gd

- Refurbishment work is on-going from summer 2018 for SK-Gd
- Water filling almost completed and will resume from next month
- Gd loading schedule with consideration of J-PARC schedule
- Start from 0.01% Gd
 → 0.1% Gd

Summary

- T2K collaboration has released updated oscillation results with increased anti-neutrino data up to May 2018
- CP conservation values (δ_{CP} =0, π) are not within 2σ CL intervals
 - Strong motivation for further beam data taking for 3σ exclusion
- New result of \overline{v}_e appearance with 2σ CL level
- Many upgrade plans (Beam, Near detector, SK-Gd) are on-going

Atmospheric parameter: Δm^2_{32} and θ_{23}

- With reactor constraint
- Best fit lies in 2nd octant (sin²θ₂₃=0.532)
- Consistent with maximal mixing

Best-fit and 1σ conf. interval

	NH	IH
Δm² ₃₂ (eV²)	2.452 [2.382, 2.523]	2.432 [2.361, 2.501]
sin²θ 23	0.532 [0.495, 0.562]	0.532 [0.497, 0.561]

JZR NOvA Experiment

- US long-baseline neutrino oscillation experiment
 - Fermilab neutrino beam to Sudan mine ⇒ 810 km baseline length
 - Off-axis neutrino beam
 - > 700 kW beam achieved
 - Functionally identical near/far detectors
 - Segmented liquid scintillator bars
 - 14 kton total mass (65% active mass)
 - Data analysis
 - Event classification with Convolutional Neural Network

New Results from NOvA

- NOvA Updated results for Neutrino2018 (June 4, 2018)
 - ne 4, 2018) @ Neutrino2018

M. Sanchez

NOvA Far Detecto

- First antineutrino results with 6.9 x 10²⁰ POT (in addition to neutrino-mode 8.85 x 10²⁰ POT data)
 - 18 antineutrino events ⇔ 5.3 events BG
 - 58 neutrino events ⇔ 15 events BG
- "> 4σ evidence of v
 _e appearance"

JER New Results from NOvA

- NOvA Updated results for Neutrino2018 (June 4, 2018) M. Sanchez @ Neutrino2018
 - First antineutrino results with 6.9 x 10²⁰ POT (in addition to neutrino-mode 8.85 x 10²⁰ POT data)
 - 18 antineutrino events ⇔ 5.3 events BG
 - 58 neutrino events ⇔ 15 events BG
 - Prefer non-maximal θ₂₃ with 1.8σ and exclude lower octant at similar level
 - Prefer NH by 1.8 σ and exclude $\pi/2$ in IH at >3 σ
- Competition is severe, therefore stable and powerful beam delivery to T2K is the key

