The Surprising Solar Gamma-ray Emission from Cosmic-Ray Interactions

Kenny, Chun Yu Ng (吳震宇) Weizmann Institute of Science

Kenny C.Y. NG, ICRR 2018

Observations of the Sun

Fundamental Physics from the Sun

Helium Discovery

400 nm 450 nm 500 nm 550 nm 600 nm 650 nm 700 nm

Sun – Cosmic-Ray Beam Dump

CR electrons Inverse-Compton

Seckel, Stanev, Gaisser (1991) Zhou, KCYN, Beacom, Peter [1612.06420]

CR protons Hadronic

Dark Matter/Gravity problem

Big Bang Nucleosynthesis
 \CMB

Clusters

Galaxies/Local

Weakly interacting massive particles

Direct Detection

thermal freeze-out (early Univ.) indirect detection (now)

direct detection

Indirect Detection

Sun – Dark Matter detector

$$\Gamma_{\rm ann} = \frac{1}{2} C_{\rm ann} N^2 = \frac{1}{2} \Gamma_{\rm cap}$$

Press, Spergel (1985) Krauss, Freese, Press, Spergel (1985) Silk, Olive, Srednicki (1985)

Solar WIMP Search

- Best limit on SD cross sections
 - Hard Channels

- Both scattering and Annihilation !
- How far can neutrino telescopes reach?

Sun – Cosmic-Ray Beam Dump DM Detector

Seckel, Stanev, Gaisser (1991) Zhou, KCYN, Beacom, Peter [1612.06420] **CR** protons Hadronic

Solar atmospheric gamma rays

Zhou, KCYN, Beacom, Peter [1612.06420]

Limb contribution (Theoretical Min)

Theoretical Max from CR

Reality

- Solar B-field
- Solar Modulation

anno 1

Solar ATM gamma-ray production

Limb contribution

Theoretical Max from CR

Boost gamma-ray production

Figure 1: Model of magnetic fields near the photosphere. Shading increases with magnetic field intensity.

Seckel, Stanev, Gaisser (1991)

The overall picture 2011

- Model prediction too small
- Limb too small
- Satisfy cosmic-ray bound → CR model with large B-field enhancement

Solar gamma analysis

• Fermi data (e.g., 6 years, 10-100 GeV)

Observation: 9-year averaged spectrum

• 2008 - 2017

Tang + 1804.06846 PRD 98 no.6, 063019

CR Solar Modulation / solar activity

CR Solar Modulation / solar activity

Time variation

Tang + 1804.06846 PRD 98 no.6, 063019

- Clear anticorrelation with solar activity from 1-10 GeV
- Less clear in 10-100 GeV (less variation or insufficient statistics)

Amplitude Problem

- 1 GeV gamma <-> 10GeV proton.
- Amplitude observed on Earth too small!

Kenny C.Y. NG, ICRR 2018

Observation: 9-year averaged spectrum

• 2008 - 2017

Tang + 1804.06846 PRD 98 no.6, 063019

High energy photon/Time variation, Surprise (1)!

- >100 GeV events
- 6 events from AUG 2008 to Jan 2010 (quiet Sun)
- 0 events for the next 7.8 years (active Sun)

Maximum Solar Disk Emission10⁻⁴10⁻⁴10⁻⁴10⁻⁵10⁻⁶ $<math>\overline{S} \times 2010$ $\overline{S} \times 2010$ $\overline{S} \times 6^{(x_{6})}$ $\overline{S} \times 6^{(x_{6})}$ $\overline{S} \times 6$ Linden + 1803.05436 PRL 121 no.13, 131103

The high-energy photon production are very sensitive to the solar condition

Sun shadow observations

- Perhaps not too surprising actually.
- TeV cosmic-ray sun shadows (near Sun-trajectory)

Tibet Asgamma PRL 2013

Spectrum, surprise (2)

Hard spectrum till ~100 GeV

Tang + 1804.06846 PRD 98 no.6, 063019

- Magnetic enhancement works for protons ~ TeV
- Enhancement increasingly efficient! Close to upper bound at HE

Spectrum, surprise (3)

- Strange "dip" between 30-50 GeV
 - Naively, two components, but not easy
 - No obvious instrumental explanation
 - Seems shallower outside solar minimum
 - Statistical fluke? Time-dependent feature/systematics? Will know soon

Kenny C.Y. NG, ICRR 2018

Tang + 1804.06846 PRD 98 no.6, 063019

Morphology, surprise(4)

Low Energy Bin
 – 10-50GeV

Linden + 1803.05436 PRL 121 no.13, 131103

Morphology, *surprise(4)*

High Energy BIN

Linden + 1803.05436 PRL 121 no.13, 131103

24

Morphology, *surprise(4)*

Linden + 1803.05436 PRL 121 no.13, 131103

- Two spatial components
- Polar
 - Relatively stable vs time

- Equatorial
 - Extreme time variation

The HAWC Observatory

Hao Zhou TeVPA2018

LOS Alamos

300 Water Cherenkov Detectors
22,000 m² detector area
Sub TeV - >100 TeV Sensitivity
Wide field of view: ~2 sr
High duty cycle: >95%

Main array inaugurated on March 20

Excellent detector for extended sources

Gamma Hadron Separation

• Large FOV, all weather instrument

HAWC analysis

Nov 2014 - December 2017 (829 days) \bullet

Significance map

First HAWC analysis of the Sun (2014-2017)

- Constrain ~10% of CR upper bound (active phase)
- Exciting prospect for current solar min (2018 -)

Solar Atmospheric Gamma rays

Complicated.....

But could be a new probe for solar physics!

Solar Atmospheric Neutrinos

KCYN, Beacom, Peter, Rott 2017

Dilute atmosphere, larger neutrino flux

Seckel+ 1991, Moskalenko+, 1993, Ingelman+ 1996, Hettlage+ 2000, Fogli+ 2003 C.A. Argüelles+ *1703.07798* Joakim Edsjo+ 1704.02892

Neutrino point source detection

Numu_CC events
 Starting events

$$\frac{dN^{\text{sta}}}{dE_{\mu}} \simeq N_A \rho V T \frac{1}{1-y} \left[\frac{d\Phi}{dE_{\nu}}(E_{\nu})\sigma(E_{\nu}) \right]_{E_{\nu} = \frac{E_{\mu}}{(1-y)}}$$

Entering events

$$\frac{dN^{\text{ent}}}{dE_{\mu}} \simeq \frac{N_A \rho AT}{\rho \left(\alpha + \beta E_{\mu}\right)} \int_{\frac{E_{\mu}}{1-y}}^{\infty} dE_{\nu} \frac{d\Phi}{dE_{\nu}}(E_{\nu}) \sigma(E_{\nu})$$

Muon range

 Muon range limited by energy loss. Starting Events eventually wins (for Gen2 horizontal events?)

Background or Signal? (Both!)

Theorist Expectation

IceCube Search

Gamma connection

From gamma rays: mininum event rate is 1 event/ 1.5 years Difficult......

Are they (gamma) flares?

Could have corresponding neutrinos flares

 If the emission is associated with certain solar structures (coronal holes, etc)

Time (UTC)	Energy	R.A.	Dec	Solar Distance	Event Class	PSF Class	Edisp Class	P6	P7	BG Contribution
2008-11-09 03:47:51	212.8 GeV	224.497	-16.851	0.068°	UltraCleanVeto	PSF0	EDISP3	\checkmark	\checkmark	0.00050
2008-12-13 03:25:55	139.3 GeV	260.707	-23.243	0.126°	UltraCleanVeto	PSF2	EDISP1	Χ	Χ	0.00038
2008-12-13 07:04:07	103.3 GeV	260.346	-23.102	0.399°	UltraCleanVeto	PSF0	EDISP2	Χ	Χ	0.00052
2009-03-22 08:43:13	117.2 GeV	1.337	0.703	0.255°	UltraCleanVeto	PSF1	EDISP3	\checkmark	\checkmark	0.00027
2009-08-15 01:14:17	138.5 GeV	144.416	14.300	0.261°	UltraCleanVeto	PSF2	EDISP3	\checkmark	\checkmark	0.00021
2009-11-20 07:55:20	112.6 GeV	235.905	-19.473	0.288°	UltraCleanVeto	PSF1	EDISP1	X	Χ	0.00020
2008-12-24 05:41:53	226.9 GeV	272.899	-23.343	0.069°	UltraClean	PSF1	EDISP3	X	X	0.00128
2009-12-20 08:06:31	467.7 GeV	268.046	-23.177	0.338°	UltraCleanVeto	PSF1	EDISP0	Χ	Χ	0.00208

- Will continue monitor the incoming solar minimum
- Perhaps also correlate with HAWC search.

Solar ATM neutrino – indirect detection Neutrino Floor

No B-field effect are considered

IceCube Search ongoing [S. In & C. Rott ICRC17 (965)]

KCYN, Beacom, Peter, Rott, 1703.10280 See also Arguelles+ 1703.07798 Edsjo+ 1704.02892

Kenny C.Y. NG, ICRR 2018

Dark Matter with long-lived mediators

Leane, KCYN, Beacom 1703.04629

- Unlock
 - Gamma rays
 - Electrons, muon, etc

- Unsuppressed
 - Neutrinos!

Batell, Pospelov, Ritz, Shang, 0910.1567 Bell, Petraki, 1102.2958 Feng, Smolinsky, Tanedo, 1602.01465 Arina, Backovic, Heisig, Lucente, 1703.08087 etc

Mediator Escape and Decay

- Viable for a large range of lifetime, actually
- "Highly boosted"

$$P_{\rm surv} = e^{-R_{\odot}/\gamma c\tau} - e^{-D_{\oplus}/\gamma c\tau}$$

Mediator Escape and Decay

- Viable for a large range of lifetime, actually
- "Highly boosted"
- Box spectrum cutoff at low E

Secluded dark matter Gamma Rays

Secluded dark matter Neutrinos

Expected Neutrinos and Muons
 – No Cooling and Absorption

Dark Matter with long-lived mediators

HAWC 1808.05624 Also Leane, KCYN, Beacom 1703.04629

- Optimal mediator life time + capture equilibrium
- Complementary to direct detection (SD cross section)

HE Solar Messengers

	Gamma Rays	Neutrinos (< TeV)	Neutrinos (> TeV)
Cosmic rays + Solar Atmosphere			
WIMP Dark Matter			
Dark Matter + Mediators			

Maybe electrons/positrons or neutrons can also been seen from space?

Summary

- Solar gamma rays
 - Complicated
 - TeV
 - More time (solar minimum starting this year)
- Solar atmospheric neutrinos

 Not yet detected

• Looking for anomalous signal/new physics

Backup slides