Challenge to the Most Distant Evolved Galaxies: Hint on Star-formation Activity during the First 500 Million Years of the Cosmic History

Ken Mawatari (ICRR Fellow)

<u>Background</u>

"Passive galaxy" in this work:

galaxy experiencing > 200Myr after stopping star-formation

Motivation

(1) Search for passive galaxies at z > 5 (2) To constrain SFRD at z > 10

ICRR seminar

Balmer/4000A break

Key spectral feature of passive galaxies

Balmer Break becomes stronger with older age or higher metallicity.

Balmer Break Galaxy (BBG) = Passive galaxy

ICRR seminar

Color selection of passive galaxies

Observed near-infrared (2 – 5um) colors of model galaxies (Bruzual & Charlot 2003) K, Spitzer-3.6um, and 4.5um bands

Color selection of passive galaxies

ICRR seminar

18/6/19

Three types of galaxies with redK-[3.6] color.(1) Balmer Break Galaxy (BBG)

age >200Myr

(2) Dusty Star-forming galaxy (DSFG)

(3) Dusty Nebular-line emitter (DNLE)

Extremely young star-forming galaxy has very strong emission lines

Criteria for BBG at 5<z<8 K – [3.6] > 1.75

K - [3.6] > 2.4([3.6]-[4.5])+1.05

c.f. Mawatari+16b

<u>Data</u>

All the imaging data available in the UVISTA UD stripes $1 \sim 3$.

					= Used area			
Instrument	Filter	FWHM*	Limiting flux [†]	Survey	3.5			
		(arcsec)	(5 <i>σ</i>)					
HST/ACS	F814W	0.10	27.5(26.6§) mag	COSMOS				
Subaru/HSC	g	0.75	26.9 mag	SSP/UD S16A				
Subaru/HSC	r	0.54	27.0 mag	SSP/UD S16A				
Subaru/HSC	i	0.61	26.5 mag	SSP/UD S16A	\$tripe1 2 3 4			
Subaru/HSC	z	0.56	26.2 mag	SSP/UD S16A				
Subaru/HSC	y	0.70	25.2 mag	SSP/UD S16A				
VISTA/VIRCAM	Y	0.8	25.8 mag	UltraVISTA/UD DR3				
VISTA/VIRCAM	J	0.77	25.7 mag	UltraVISTA/UD DR3				
VISTA/VIRCAM	H	0.75	25.5 mag	UltaraVISTA/UD DR3				
VISTA/VIRCAM	K_s	0.75	25.2 mag	UltraVISTA/UD DR3				
Spitzer/IRAC	3.6µm	1.7	23.8 mag	SPLASH				
Spitzer/IRAC	$4.5 \mu m$	1.6	23.8 mag	SPLASH	HST/F814W			
Spitzer/IRAC	$5.8 \mu m$	1.8	20.7 mag	S-COSMOS				
Spitzer/IRAC	$8.0\mu m$	2.1	20.7 mag	s-cosmos Ke	y data [scosmos/mac			
Spitzer/MIPS	$24 \mu m$	5.9	19.0 mag	S-COSMOS	HerMES			
Spitzer/MIPS	$70 \mu m$	18.6	14.1 mag	S-COSMOS				
Herschel/PACS	$100 \mu m$	7.2	14.2 mag	PEP DR1				
Herschel/PACS	$160 \mu m$	12.0	13.4 mag	PEP DR1	151 150.5 150 149.5 149			
Herschel/SPIRE	$250 \mu m$	18.15	14.1 mag	HerMES DR4	R.A.[degree]			
Herschel/SPIRE	$350 \mu m$	25.15	14.4 mag	HerMES DR4				
Herschel/SPIRE	$500 \mu m$	36.3	14.0 mag	HerMES DR4				
JCMT/SCUBA2	$850 \mu m$	8.0	14.1 mag	S2CLS	Douth of $V = 270$ [2 C] = 24			
VLA	1.4 GHz	_	$75\mu\mathrm{Jy}$	VLA-COSMOS/Large	Depth of $K \sim 25 \& [3.6] \sim 24$			
XMM-Newton	0.5-2 keV	_	$5 imes 10^{-16} {\rm erg} {\rm cm}^{-2} {\rm s}^{-1}$	XMM-COSMOS	mag anable us to datast			
XMM-Newton	2-10 keV	_	$3 imes 10^{-15} {\rm erg} {\rm cm}^{-2} {\rm s}^{-1}$	XMM-COSMOS	mag enable us to detect			
XMM-Newton	5-10 keV	_	$7 imes 10^{-15}{ m erg}{ m cm}^{-2}{ m s}^{-1}$	XMM-COSMOS	passivo galaxios down to M ~			
Chandra	0.5-2 keV	_	$2.2\times 10^{-16}{\rm ergcm^{-2}s^{-1}}$	Chandra COSMOS Legacy	hassine galaxies nowit to M*			
Chandra	2-10 keV	_	$1.5 \times 10^{-15} \rm erg cm^{-2} s^{-1}$	Chandra COSMOS Legacy	3x10 ¹⁰ Msun			
Chandra	0.5-10 keV	_	$8.9 \times 10^{-16} \mathrm{erg} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	Chandra COSMOS Legacy				

z~6 BBG selection

Balmer Break Galaxy (BBG) selection

- •We focus on only isolated objects in the K and 3.6um image for photometric accuracy.
- The Color selection
- K [3.6] > 1.75K - [3.6] > 2.4([3.6]-[4.5])+1.05N = 23

Non-detection in

optical, MIR(λ >10um), FIR, radio, and X-ray

to remove

strong line emitters, extremely dusty galaxies,

and AGNs.

Stacking

Stacking of the 8 BBG candidates

Detections in the H, K, 3.6um, 4.5um, and very deep constraints in other bands.

x \sim sqrt(8) improvement in photometry

z~6 BBGs' color

- Photometric selection of 8 passive galaxies with the strong Balmer break at z ~ 6

SED fitting

 Model template fitting for the stacked Spectral Energy Distribution (SED) results in the best-fit by an old galaxy model at z ~ 6 with 0.7 Gyr passive phase.

Supplementary Table 2: Model parameter range on SED fitting

Templates	BC03+line+Dust						
SFH	Exp-decline/rising, constant-SF						
	$(\tau = 0.03, 0.06, 0.1, 0.3, 0.6, 1, and 10 \text{ Gy}$			Sorry, I	, but the best-fit parameter values are secret ti		
Metallicity	0.0001, 0.004, and 0.02			paper is accepted			
Age [Gyr]	0.001 – age of the Universe						
Redshift	0-8		00	- E			
Dust A_V	0 – 10 💥					. *	
☆ We forbidden extremely dusty passive parameter space where the Kennicutt-Schdmit law is completely broken: Av > 4xSFR ^{0.3}			100 10 1 0.1 0.01	0.5	z ² 3 dusty mode NOT selected in the MC simulation the MC simulation z prob dist i secret till paper is accepted 0 2 4 6 Redshift 3 10 30 100 300	l is on s - 8 1000	
18/6/19		10	RR sen	ninar	Observed wavelength (µm)		

Stellar Mass Density of z~6 BBGs

<u>Assumption</u>

: The 8 candidates are all BBGs

at z = 5 - 8,

with $M_* = 4 \times 10^{10} M_{sun}$

After correcting the detection incompleteness, stellar mass density (SMD) of z~6 BBGs is

Sorry, but the SMD value is secret till paper is accepted

consistent with the trend at z = 0 - 4
passive fraction~3%

Formation and quenching of first massive galaxies in the universe was proceeded by z = 6 !

Progenitors of z~6 BBGs

Star Formation Rate Density at z~20

SFRD of the BBG progenitors is estimated via

$$SFRD_{prog} = SFR(t = \tau) \times n_{prog} \times f_{obs}$$
Number density of the BBG progenitors
= that of the BBGs at z~6

Typical SFR of the BBG progenitors

$$f_{obs} = \frac{T_{SF}}{T_{BBG}} = \frac{2 \times \tau}{age_{BBG} - 2 \times \tau - 0.2Gyr}$$

: Fraction of observable timescale

Star Formation Rate Density at z~20

SFRD of the BBG progenitors is regarded as a lower-limit of the cosmic SFRD. We constrain the SFRD at z>10 for the first time.

ICRR seminar

14

Summary

- Photometric selection of 8 passive galaxies with the strong Balmer break at z \sim 6
- Their SEDs are well fit by old galaxy model at z ~ 6 with > 0.5 Gyr passive (non-star-forming) phase.
- Their expected star-formation epoch is z > 15!
- Follow-up observation by ALMA is proceeding now.
- Spectroscopic confirmation is very important. (=> JWST)

