Forward particle measurements at colliders and air shower development

Takashi Sako

High Energy Cosmic Ray Research Division, ICRR

ICRR seminar

What I was doing before joining ICRR

What I am studying at ICRR

Takashi Sako

High Energy Cosmic Ray Research Division, ICRR

Outline

- Air shower observation and hadron interaction
- Forward particle measurements at collider
- LHCf and RHICf experiments
 - Introduction to the LHCf experiment
 - Forward π^0 and neutron results
 - Vs dependence
 - RHICf
- Model tuning to the LHCf result and impact on air shower simulation
- Summary and future

High-energy cosmic ray observations

- High-energy particles from outer space, cosmic rays, are observed
- Majority of CRs is fully ionized nuclei including protons
- 10²⁰eV(=16J) CRs are observed
- LHC can accelerate up to 7x10¹²eV

Where is the origin of CRs? How are they accelerated?

Very low flux at high energy Ex) >10²⁰eV 1 ptcl/1km²/century

Direct observation is not available

=> Air shower technique

超高 発生源はと、

89アトランティスは

人は歴外にいるとき、1秒間に約1回 は宇宙線を浴びている。それが感じられ ないのは、「線」とは言っても、その正 体はきわめて小さな亜原子粒子、とくに プロトンであるからだ。宇宙線は宇宙の あらゆる方角から高速で地球の大気に 降り注いでいることが、ここ100年にわ たって観測されている。太陽を発生源と する宇宙線もあるが、ほとんどは遠く顔 れた未知の場所からやってくる。光言に つ宇宙線もある。いったいどのよう 手がそ のような超高エネルギーを得ること 学界で長い間議論されてきた。 その発生顔を知ることはできない。 宇宙線は、星間 力な手がかりだ。

宇宙線の発生源の一つと考えられているクエーサー。超高エネルギーの活動旅河核である。

2+BQ#R/ 磁場に沿ってい しかし最近になって、 超高の の宇宙線と超新星残骸を取り巻く繊索 とを結びつける証拠が見つかった。こ の磁場に閉じ込められ、エネルギーを 帯びた粒子が加速して、超新星の衝撃 波の間をぐるぐる回るうちにさらにスピー ドを増し、最後には弾丸のように宇宙空 宇宙線を発見したビクターへス。
間に飛び出すことが明らかになったの 近いスピードで移動できるほど高 ーを持 だ。2013年2月の発表によれば、これらの相互作用 によって2つの超新星残骸の周りにガンマ線が生じる ことが、フェルミガンマ線宇宙望遠鏡によって探知さ れた。直接の証拠とはまだ言えないにしても、謎に 宇宙線がやってくる道筋を単純しましても、 満ちた宇宙線の発生源についてのこれまでで最も有

LE RAMER T ">t. #

High-energy cosmic ray observations

- High-energy particles from outer space, cosmic rays, are observed
- Majority of CRs is fully ionized nuclei including protons
- 10²⁰eV(=16J) CRs are observed
- LHC can accelerate up to 7x10¹²eV

Where is the origin of CRs? How are they accelerated?

- Very low flux at high energy Ex) >10²⁰eV 1 ptcl/1km²/century
- Direct observation is not available

=> Air shower technique

Air shower technique

- km²~1000km² detection area is achieved using a sparse array of the ground detectors
- Identification of primary particle (nuclei, gamma, etc...) is possible by measuring the difference in the air shower development
 - We can (want to) extract
 - Energy
 - Direction
 - Type (mass number, γ, e⁻, ν) of the primary particles

=>

Analyses strongly rely on the MC simulation of air shower development, especially fundamental hadronic interaction is essential⁷

Model dependent mass interpretation

- Is difference between proton and Helium small? => Factor 4 in mass number!!
- Is the truth really between the existing models? => Nobody knows!!

Models must be tested by accelerator data

Hadronic interaction in air shower

- km²~1000km² detection area is achieved using a sparse array of the ground detectors
- Identification of primary particle (nuclei, gamma, etc...) is possible by measuring the difference in the air shower development
- We can (want to) extract
 - Energy
 - Direction
 - Type

of the primary particles

=>

Analyses strongly rely on the MC simulation of air shower development, especially fundamental hadronic interaction is essential⁹

Hadronic interaction in air shower

- $km^2 \sim 1000 km^2$ detection area is achieved using a sparse array of the ground detectors
- Identification of primary particle (nuclei, gamma, etc...) is possible by measuring the difference in the air shower development

rticles

Cosmic-ray spectrum and collision energy

Though the particle energy is 7x10¹²eV at LHC, the collision energy corresponds to E_{CR}=10¹⁷eV

Detectors @ Colliders

✓ Main physics at colliders are achieved using the "Central detectors"
 ✓ But...

- \checkmark Most of the particles are produced in the central region
- Most of the energy flows into very forward = relevant to CR air shower
 - forward = soft interaction; theoretical difficulty
 - experimental difficulty

Angular distribution at colliders

multiplicity and energy flux at LHC 14TeV collisions

- \checkmark Most of the particles are produced in the central region
- Most of the energy flows into very forward = relevant to CR air shower
 - forward = soft interaction; theoretical difficulty
 - experimental difficulty

Forward detectors @ Colliders

- ✓ CMS CASTOR and TOTEM T1/T2 cover most forward at CMS
- ✓ TOTEM/ALFA roman pots are powerful for total cross section measurements
- ✓ ZDC/LHCf/RHICf cover neutral particles at zero degree

(zero degree measurement is possible only in p-p, but not in p-pbar)

- ✓ CMS CASTOR and TOTEM T1/T2 cover most forward at CMS
- ✓ TOTEM/ALFA roman pots are powerful for total cross section measurements
- ✓ ZDC/LHCf/RHICf cover neutral particles at zero degree

(zero degree measurement is possible only in p-p, but not in p-pbar)

The LHC forward experiment

- ✓ All charged particles are swept by dipole magnet
- ✓ Neutral particles (photons and neutrons) arrive at LHCf
- ✓ η >8.4 (to infinity) is covered

LHCf Detectors

- ✓ Imaging sampling shower calorimeters
- ✓ Two calorimeter towers in each of Arm1 and Arm2
- Each tower has 44 r.l. (1.6λ) of Tungsten,16 sampling scintillator and 4 position sensitive layers
- ✓ Plastic scintillators => GSO scintillators, SciFi => GSO bars in Run2

LHCf Detectors

- ✓ Imaging sampling shower calorimeters
- ✓ Two calorimeter towers in each of Arm1 and Arm2
- ✓ Each tower has 44 r.l. of Tungsten,16 sampling scintillator and 4 position sensitive layers
- ✓ Plastic scintillators => GSO scintillators, SciFi => GSO bars in Run2

Detector construction in Japan and Italy

All of design, construction, calibration of the detectors, data • acquisition and analyses are led by the Nagoya U group

Largest and Smallest TeV gamma-ray detectors

Sampling calorimeter

- Incident particles develop showers in Tungsten
- Deposited energy is sampled by scintillators interleaved (3% for EM showers)
- Four strip detector layers record lateral distribution of showers

Event example @ LHC

Particle ID (PID)

Photon event

Neutron event

(Adriani et al., PRD, 2012)

Dynamic range and linearity test using UV pulse laser

N₂ laser (KEN-1020)

- 337.1nm
- 0.3ns pulse

Scintillators with τ =9.6ns (EJ-260) and τ =30ns (GSO) are used to avoid saturation

Non-uniformity calibration at HIMAC

- Calorimeters WITHOUT tungsten layers were scanned over the ion beam
- Signal intensity as a function of the position was extracted

Detector performance @ CERN SPS

(a) Arm1: 20 mm tower.

Installation into the LHC tunnel

LHCf/RHICf History

- ✓ 2004 LOI submitted to CERN
- ✓ 2006 TDR approved by CERN
- ✓ 2009 First data taking at <u>Vs=900GeV p-p</u> collision
- ✓ 2010 <u>Vs=7TeV p-p</u> collision
- \checkmark 2013 $\sqrt{s=2.76TeV p-p \& \sqrt{s_{NN}}=5TeV p-Pb}$ collisions
- ✓ 2015 <u>Vs=13TeV p-p</u> collision
- \checkmark 2016 <u>Vs_{NN}=8.1TeV p-Pb</u> collision
- ✓ 2017 <u>Vs=510GeV polarized p-p</u> collision as RHICf

Publications

physics results

performance results

	Photon (EM shower)	Neutron (hadron shower)	π^0 (limited acceptance)	π ^o (full acceptance)	Performance
Beam test	NIM, A671 (2012) 129- 136	JINST, 9 (2014) P03016			
0.9TeV p-p	PLB, 715 (2012) 298- 303				IJMPA, 28 (2013) 1330036
7TeV p-p	PLB, 703 (2011) 128- 134	PLB, 750 (2015) 360- 366	PRD, 86 (2012) 092001	PRD, 94 (2016) 032007	
2.76TeV p-p			PRC, 89 (2014) 065209		
5.02TeV p-Pb					
13TeV p-p	PLB, 780 (2018) 233- 239	Analysis in progress			

Publications

physics results

performance results

	Photon (EM shower)	Neutron (hadron shower)	π^0 (limited acceptance)	π ^o (full acceptance)	Performance
Beam test	NIM, A671 (2012) 129- 136	JINST, 9 (2014) P03016			
0.9TeV p-p	PLB, 715 (2012) 298- 303				IJMPA, 28
7TeV p-p	PLB, 703 (2011) 128- 134	PLB, 750 (2015) 360- 366	PRD, 86 (2012) 092001	PRD, 94 (2016)	(2013) 1330036
2.76TeV p-p			PRC, 89 (2014)	032007	
5.02TeV p-Pb			065209		
13TeV p-p	PLB, 780 (2018) 233- 239	Å			

π⁰ p_z spectra in 7TeV p-p collisions (PRD, 94 (2016) 032007)

✓ EPOS-LHC and QGSJET II-04, standard in air shower MC, are not bad ³⁵

π^0 in 7TeV p-p collision LHCf and models

5

π^0 in 7TeV p-p collision LHCf and models (ratio to data)

Neutrons in 7TeV p-p collision (Vs=7TeV p-p; PLB 750 (2015) 360-366)

(~10% of other neutral hadrons at 140m are included both in data and MC)

- ✓ Only QGSJET II explains the characteristic peak near zero degree
- ✓ **DPM** and **PYTHIA** under production at zero degree
- ✓ DPM and PYTHIA not bad at off-zero degree. DPM is best.

- High-energy peak @ 0 degree is also confirmed with the 13TeV data
- NOTE: p_T coverage is different from the 7TeV analysis

Vs scaling; π^0

collision energy (in)dependence

- ✓ Scaling is essential to extrapolate beyond LHC
- ✓ (630GeV −) 2.76TeV − 7TeV good scaling within uncertainties
- ✓ Wider coverage in y and p_T with 13TeV data
- ✓ Wider √s coverage with RHICf experiment in 2017 at √s=510GeV

Feynman x; $x_F = 2p_z/\sqrt{s}$

Vs scaling; Neutron @ zero degree

- ✓ Excellent scaling at $\sqrt{s} = 30-200$ GeV
- \checkmark \sqrt{s} = 7TeV result agrees in a peak structure, but slightly soft??
- ✓ LHCf data at 900GeV, 2.76TeV, 13TeV to be analyzed
- ✓ RHICf data at 510GeV becomes available

Vs scaling, or breaking?

LHCf 2.76TeV and 7TeV data shows Vs scaling of forward π^0

42

RHICf is a kind of Zero degree calorimeters @STAR interaction point

RHICf detector

- Former LHCf Arm1 detector used at LHC
- Two compact sampling calorimeters
- 44 r.l. (1.7 hadron interaction lengths)
- <5% and 40% energy resolutions for EM and hadronic showers, respectively
- <0.2mm and <1mm position resolutions for EM and hadronic showers, respectively

(traditional) Zero Degree Calorimeter behind RHICf

Collision rates in RHICf week

- Higher β^* (=8m) than usual RHIC operation
- Radial polarization (usually vertical) to maximize the single-spin asymmetry in vertical
- Luminosity~ 10^{31} cm⁻²s⁻¹

Quick look (statistics)

RHICf DAQ rate

120 ×10

- Max rate was limited ~1kHz
- High rate events were prescaled
- Low rate events were enhanced with special triggers
- Prescale factors were optimized from time to time

Number of recorded events RHICf Run17 Statistics RHICf All 100 RHICf+STAR L3T Shower 80 L3T Special1 (Type-I nº) L3T Special2 (High-energy EM) 60 Total acquisition time 1659min = 27.7 hours 40 20 24-21h 25-09h 25-21h US Eastern Time (June-2017)

Quick look (polarization & spectrum)

Though physics of polarized beam collision is not covered in this talk...

Quick look(basic performance)

Quick look (common run with STAR)

- Hadron-like (deep penetrating) showers were selected
- Anticorrelation between the RHICf raw (folded) energy and ZDC measured energy (in ADC unit) is confirmed
- (Anti)correlation only with West ZDC as expected => correct event matching $_{48}$

Model tuning to the LHCf results

- LHCf photon events are categorized in 'diffractive' and 'non-diffractive' using the ATLAS information
- SIBYLL2.3c-diff tuned to LHCf diffractive photons

Effect of new tune to air shower

Summary

- Air shower analyses are influenced by the uncertainty of hadronic interaction
- Current and future colliders cover the collision energies appropriate to the air shower observations
- Dedicated forward measurements are important
- LHCf and RHICf observed forward particle production from E_{CR} =10¹⁴eV to 10¹⁷eV
- Current popular models have reasonable agreement with the LHCf results and they are updating
- Next keys are
 - Combined analyses with the central detector (LHCf-ATLAS, RHICf-STAR)
 - Collision energy (in)dependence of particle production (ISR-PHENIX-RHICf-LHCf)
 - Light ion collisions like p-O, O-O at LHC
 - Feedback from the air shower observations

- km²~1000km² detection area is achieved using a sparse array of the ground detectors
- Identification of primary particle (nuclei, gamma, etc...) is possible by measuring the difference in the air shower development

=>

Analyses strongly rely on the MC simulation of air shower development, especially fundamental hadronic interaction is essential

粒子生成素過程と空気シャワー発達

CR mass estimation from air shower

KASCADE Grande, Astropart. Phys., 47 (2013) 54-66

PAO, PRD, 90, 122005 (2014)

55

- ✓ Techniques to estimate mass from air shower observations
 - Knee to Ankle : N_e N_{mu}
 - Ankle to Cutoff : <X_{max}>, N_{mu}
- Interpretations rely on the MC predictions with an <u>assumed hadronic</u> <u>interaction model</u>

Setup of SPS beam test

- Calorimeters were exposed to the SPS electron (100-200GeV), proton (350GeV) and muon (150GeV) beams
- Calorimeters were scanned over the beams
- Impact points were measured using a silicon strip tracker

Channel to channel calibration Beam test results vs. MC simulation

Charge => energy factors are determined by scaling the MC results to the experimental data

Cosmic-ray flux

- Maximum energy up to 10^{20} eV (LHC beam energy is $7 \times 10^{12} \text{ eV}$)
- Structures in the energy spectrum suggest their origins
 - Knee @ 10¹⁵eV ... end of the galactic protons ??
 - Ankle @ 10¹⁸eV ... transition from galactic to ex-galactic origins ??
 - Cutoff @ 10²⁰eV ... end of the ex-galactic origin ??

 π^0 SIBYLL 2.1

 \checkmark Totally overestimate because of larger phase space in high p_T

 π^0 EPOS-LHC

Very good agreement at mid-energy (large cross section range)

Slightly overestimate in high energy (small cross section range)

 π^0 QGSJET II-04

- ✓ Perfect in shape, slightly underestimate in higher p_T
- ✓ Totally slightly underestimate

Neutron SIBYLL 2.1

✓ Lowest neutron yield, especially at zero degree

Neutron QGSJET II-03

- ✓ Qualitatively nice agreement, only model, at zero degree
- ✓ Lower yield at non-zero angle

Neutron EPOS 1.99

✓ Generally low yield

Detector performance

モデルのdiffraction事象の生成質量分布

diffractionの取り扱い。

low-mass diffraction事象の感度

- ◆ Central-veto は low-mass
 diffraction (log₁₀(ξ_x) < -6.0)に対し
 て約100%の検出効率がある。
- ◆ ATLAS-LHCf連動実験によるこれ まで測定例のないlow-mass diffraction事象の選別方法を確立。

- ◆ N_{ch} = 0 の光子スベクトルのデータとモデル予測の比較:
 - η > 10.94: EPOS-LHCはデータをよく再現した。
 - ・ 8.81 < η < 8.99: PYTHIA8212DLはデータをよく再現した。

Diffractionの生成質量分布の改良

SIBYLL2.3c-Diffの光子スペクトル

SIBYLL2.3c-Diffは連動実験の結果をよく再現できるようになった。