Hyper-Kamiokande project

Masato Shiozawa (Kamioka Observatory, ICRR)

Does proton decay?

Direct evidence for particles unification

- Standard model is just an approximation of unified theory (many of us believe)
- In grand unified theory,
 - Three forces are unified
 - $Q_{e-}:Q_u:Q_d = 3:2:1$
 - Accommodate tiny v mass
 - Prediction of proton decays
- Proton decay experiments
 - Direct probe to GUT

• Explore new paradigm of particles

Neutrino Messenger from nature

- Neutrino does mix
- Particle-antiparticle asymmetry? (<u>CP violation?</u>)

- Key to understand universe's matter dominance
- Tiny (<10⁻⁶ of electron) neutrino masses
- Neutrino mass ordering?
 - Feasibility of $0 \nu \beta \beta$ discovery experiments
 - What is the origin of tiny ν mass & large mixing?
- What's roles of neutrinos in nature?
 - Driver of Supernova explosion?
 - Probe to the interior of Sun, Earth, Universe

- Japan-based seamless program to get timely results
- Rich physics, big chance of discoveries

Hyper-Kamiokande

Atmospheric v

Atmosphere

Hyper-Kamiokande

- •Tank 60m(H) x 74m(D)
- •Total mass 260 kton
- Fducial 190 kton
- •~50,000 PMTs

MW-class J-PARC beam

Ultra-sensitive PMTs (2 x Super-K)

Supernova

Sun

- Efficiency x 2, Timing resolution x 1/2
- Pressure tolerance x 2 (>100m)
- Enhance detector performance

by better detection of faint signal, e.g. solar v, SN v, proton decay & background signature

Hyper-Kamiokande tank design

HK Design Report : KEK Preprint 2016-21, ICRR-Report-701-2016-1

Fid. mass 190 kton, an order of mag. larger than Super-K Light yield: ~2 x Super-K

(Single tank parameters)

- Cylindrical tank : H60m×D74m
- Total Mass 260 kiloton Fiducial Mass 190 kiloton
- Photo-sensors (inner detector) : 40,000 pieces giving 40% photo-cathode coverage

- New PMT enables the water tanks to be smaller, thereby reducing construction costs, without sacrificing its physics
- 2-tanks in stage: priority to realize the 1st tank ASAP

Hyper-K proto-collaboration

Inaugural Symposium@Kashiwanoha, January 2015

Hyper-K meeting@London, July 2016

- Hyper-K proto-collaboration has been established and is growing
 - 15 countries, 73 institutes, ~300 members, ~75% from abroad
- MoU between 2 host institutes: UTokyo/ICRR and KEK/IPNS
- Int. Hyper-K Advisory Committee to develop the program

Notional Timeline (1st Tank)

- 2018~2025 HK construction
- $2026 \sim$ CPV study

Atm · Solar · Supernova v study, Proton decay searches

Toward approval

- Science Council of Japan has selected Hyper-K as one of Important Large Scale Project in Materplan2017
- •MEXT (Japanese funding agency) will revise the list of important large-scale projects (Roadmap) in this summer
- •UTokyo/ICRR are preparing for the **MEXT** review and construction budget request

Contents

- Overview of Hyper-Kamiokande Done!
- Proton decay search
- Accelerator v study
- Atmospheric v study
- v astrophysics and astronomy

Proton Decays - present and future -

Motivation of Nucleon Decay Searches Only way to directly prove GUT

• Two major modes predicted by many models

• We need to pursue both decay modes for discovery, given the variety of predictions

*Searches for other modes are also important

Other modes are also important

- First discovery might happen in exotic decay modes.
 - Many models predicts branching ratio of $p \rightarrow e^+\eta$, $e^+\rho$, $e^+\omega$ are 10~20%
 - Flipped SU(5) (Ellis) predicts $Br(p \rightarrow e^+\pi^0) \sim Br(p \rightarrow \mu^+\pi^0)$

• We expect to identify details of unification picture, e.g. gauge group and other symmetries

- $\Gamma(n \rightarrow \nu \pi^0) / \Gamma(p \rightarrow e^+ \pi^0)$ depends on SU(5), SO(10), E₆ (Y. Muramatsu)

Water Ch. detector for p-decays

High mass is possible (IMton ~ 20×Super-K)
 p→e⁺π⁰, vK⁺, and more can be searched with unprecedented sensitivities

• Excellent & well-proven performance

- Good ring-imaging capability at ~IGeV
- Excellent particle ID (e or μ) capability > 99%
- Energy resolution for e and μ ~3%

• Free protons are available

- No nuclear effect, Fermi motion
- High efficiency & good S/N separation

PID likelihood (atmv)

Experimental limits and models

16

$p \rightarrow e^+ + \pi^0$ searches

Super-K cut

- 2 or 3 Cherenkov rings
- All rings are showering
- $85 < M_{\pi 0} < 185 MeV/c^2$ (3-ring)
- No decay electron
- $800 < M_{proton} < 1050 \text{ MeV/c}^2$ $P_{total} < 250 \text{ MeV/c}$

SK-II (half PMT) forward-backward display for $p \rightarrow e^+ + \pi^0$ 17

Recent improvement (1)

Beacom and Vagins PRL93:171101(2004)

Neutron tagging to reduce background events

•BG: often accompanied with neutrons by neutrino primary interactions and secondary int. in water

proton decay: neutron emission from residual nucleus is small.

Since SK-IV we have started recording faint signature of neutrons; $n+p \rightarrow d+\gamma(2.2MeV, \tau \sim 200 \mu sec)$, BG reduction by ~ 2

Recent improvement (2)

Shiozawa, talk@NNN00-Fermilab

Tight momentum cut to make BG-free box

19

Proton decays into lepton+meson

Proton decays into lepton+meson

PRD 95,012004 (2017)

paper under preparation

•p $\rightarrow e^{+}\pi^{0}$ •0 candidates (40% eff. & 0.61BG) • $T_p/Br > 1.6 \times 10^{34} \text{ yrs}$ • $p \rightarrow \mu^{+} \pi^{0}$ •2 candidates (40% eff. & 0.87BG), one is rejected after energy recalibration

• $\tau_p/Br > 7.7 \times 10^{33} \text{ yrs}$

$p \rightarrow v + K^+$ searches (II) $K^+ \rightarrow \pi^+ \pi^0$

PRD90, 072005 (2014)

 π⁰ efficiency was improved by dedicated π⁰ finding algorithm
 Shape information of π⁺ hits for BG reduction

- 260 kton×years exposure (SK-I+II+III+IV)

- $\tau_{proton}/Br > 5.9 \times 10^{33}$ years @ 90%CL

Summary of prompt γ and $\pi\pi$ searches PRD72,052007 14.6% I.3 evts. 91.7 kt y SK-I paper in 2005 $p \rightarrow \nu K^+$ data atmos. ν atmos. ν livetime signal efficiency estimated bkg. bkg. rate (evts/Mt/y) $15.7\pm0.2\%$ 0.3 evts. 91.7 kt y SK-I 2.8 ± 0.4 $13.0\pm0.2\%$ SK-II 0.3 evts.49.2 kt y 6.2 ± 0.8 31.9 kt y SK-III $15.6 \pm 0.2\%$ 3.1 ± 0.5 0.1 evts. $19.1 \pm 0.2\%$ 0.3 evts.87.3 kt y SK-IV 3.5 ± 0.4 23

Summary of Super-K

- $p \rightarrow e^+ + \pi^0$ reached to 10³⁴ yrs
- $(p,n) \rightarrow (e^+,\mu^+) + (\pi,\eta,\rho,\omega) \quad 10^{32} \sim 10^{34} \text{ yrs}$
- SUSY favored $p \rightarrow vK^+ > 5.9 \times 10^{33}$ yrs
- No excess in K^0_{S} , K^0_{L} , $\nu\pi^0$, $\nu\pi^+$
- test many decay modes
 - di-nucleon decays ($|\Delta B|=2$)
 - $pp \rightarrow K^+K^+ > 1.7 \times 10^{32}$ years
 - $pp \rightarrow e^+e^+ > 10^{33}$ years
 - $np \rightarrow (e^+, \mu^+, \tau^+) + v$
 - neutron-antineutron oscillations
 - $p \rightarrow (e^+, \mu^+) + vv$, $(e^+, \mu^+) + X$
 - radiative decays $p \rightarrow (e^+, \mu^+) + \gamma$

Still single event discovery is possible. Discovery could be around corner.

$p \rightarrow e^+ \pi^0$ search in Hyper-K

 Hyper-K is only realistic approach to proton lifetime beyond 10³⁵ years

Proton decay ($p \rightarrow \nu K^+$) search

Experimental test on Supersymmetry

Hyper-K's sensitivities

Improvements in many modes by a factor ~10 Good chance for discovery!

Neutrino Oscillations

$$(v_{e}, v_{\mu}, v_{\tau})^{T} = U_{\alpha i}^{MNS} (v_{1}, v_{2}, v_{3})^{T} \qquad U^{MNS}: \text{Maki-Nakagawa-Sakata matrix}$$

$$\begin{pmatrix} v_{e} \\ v_{\mu} \\ v_{\tau} \end{pmatrix} = \begin{pmatrix} \cos \vartheta_{12} & \sin \vartheta_{12} & 0 \\ -\sin \vartheta_{12} & \cos \vartheta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos \vartheta_{13} & 0 & \sin \vartheta_{13} e^{-i\delta} \\ 0 & 1 & 0 \\ -\sin \vartheta_{13} e^{i\delta} & 0 & \cos \vartheta_{13} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \vartheta_{23} & \sin \vartheta_{23} \\ 0 & -\sin \vartheta_{23} & \cos \vartheta_{23} \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \\ v_{3} \end{pmatrix}$$

$$P(v_{\alpha} \rightarrow v_{\beta}) = \delta_{\alpha\beta} - 4 \sum_{i>j} \operatorname{Re}(U_{\alpha i}^{*} U_{\beta i} U_{\alpha j} U_{\beta j}^{*}) \sin^{2} \frac{(m_{i}^{2} - m_{j}^{2})L}{4E_{v}}$$

$$(\pm)^{2} \sum_{i>j} \operatorname{Im}(U_{\alpha i}^{*} U_{\beta i} U_{\alpha j} U_{\beta j}^{*}) \sin \frac{(m_{i}^{2} - m_{j}^{2})L}{2E_{v}} \quad \text{Matter-effect is omitted here}$$

Neutrino Oscillation Parameters: 6 = 4 matrix elements and 2 mass-squared differences

$\frac{\theta_{23} \sim 45 \pm 5^{\circ}}{\Delta m^{2}_{23} = 2.4 \times 10^{-3} eV^{2}}$	$\frac{\theta_{12} \sim 34 \pm 3^{\circ}}{\Delta m^{2}_{21} = 7.6 \times 10^{-5} eV^{2}}$	<u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u>	<u>δ=unknown</u>
Atmospheric, Accelerator Neutrinos	Solar, Reactor Neutrinos	Accelerator, Reactor Neutrinos	Accelerator, Atmospheric Neutrinos

Mass Hierarchy ($\Delta m_{32}^2 = m_3^2 - m_2^2 > 0$ or $\Delta m_{32}^2 < 0$) is unknown Octant of θ_{23} or $\theta_{23} = \pi/2$ is also interesting question

28

CP violation

Only known CPV source=KM phase Other CPV necessary for the matter-dominated universe

\rightarrow Search for CPV in lepton sector

•Leptogenesis scenario only with v's Dirac CP phase S. Pascoli et al., PRD 75, 083511 (2007) PDG review 2014

|sinδ| >~0.6

•Flavor symmetry prediction on δ_{CP} e.g. Petcov 1504.02402v1 (right plot)

We need not only CPV discovery, but also precision measurement

- Urgent topic (world consensus)
- Technology established, need more intense beam and larger detector!

T2K : NBB + water Cherenkov

"Clean $V_{\mu} \rightarrow V_{e}$ appearance measurement" has been established! \rightarrow make CPV test possible

- S/N~10 or so, clean V_e appearance signal can be observed.
- Key elements are
- (i) narrow-band sub-GeV clean v_{μ} beam,
- (ii) 300km baseline, and
- (iii) high performance large water Cherenkov detector

Water Cherenkov technique

- For Ve appearance in T2K (J-PARC beam)
 Ve signal efficiency ~60% • BG v_{μ} +anti v_{μ} CC<0.1%, NC π^{0} ~1% (0.1<E^{rec}v<1.25GeV, can be optimized in
 - future)
- Excellent particle ID capability > 99%
- Energy resolution for e and µ ~3%
 Energy threshold ~5MeV
- - Supernova V, solar V...
- Stable operation
 - energy scale stability ~1%
 - livetime for physics analyses > 90%

Long baseline exp. w/ J-PARC

Sensitivity study

- New Hyper-K tank design with provision of 1.3MW J-PARCv beam
- Systematic uncertainties based on T2K are taken into account

•Operation of the magnetized ND280 off-axis detector should continue for HK with potential upgrades

•Two possibilities of a generic intermediate WC detector with the following potential features:

Off-axis angle spanning orientation,

Gd loading, Magnetized μ range detector

Ongoing study on locating 2nd detector in Korea

Upgrade of J-PARC Neutrino Beam

- Continuous upgrade plan of the neutrino beam intensity
 - 0.48 MW stable operation at present
 - 0.75 MW by MR upgrade starting in ~2019
 - 1.326 MW by 2026 by increasing rep. rate to 0.86 Hz

KEK Project Implementation Plan (KEK-PIP) put first priority to "J-PARC upgrade for Hyper-Kamiokande"

Expected events

10 years (13MW×10⁷s)

6040

859

CPV sensitivity

J-PARC v beam + Hyper-K

- Exclusion of $sin\delta_{CP}=0$
 - 8σ for δ=-90°
 - 80% coverage of δ parameter space for CPV discovery w/ >3σ
- δ_{CP} precision measurement
 - 20° for δ=-90°
 - 7° for δ=0°

Precision measurements

NEW x 9 years (11.25MW×10⁷s)

3.0^{×10⁻³} $\Delta m^2_{32} \ [eV^2]$ Atmospheric parameters 2014 vper-K + reactor 2.8 $\delta(\Delta m^{2}_{32}) \sim 1.4 \times 10^{-5} eV^{2}$ 2.6 \rightarrow Mass hierarchy sensitivity in combination with reactor 2.4 $\delta(\sin^2\theta_{23}) \sim 0.015$ (for $\sin^2\theta_{23} = 0.5$) 2.2[≞] 0.4 ~ 0.006 (for sin² $\theta_{23}=0.45$) 0.45 0.5 0.55 0.6 0.65 2.6^{×10⁻³} 2.55 — Hyper-K+reactor 2.5 • Near detector measurements 2.45 2.4 Cross sections 2.35 2.3 • Exotic physics searches 2.25 2,2⊑⊥ 0.35 0.5 0.55 0.65 0.40.45 0.6

37

2nd Hyper-K detector in Korea?

About 10 years ago, this possibility was discussed. Now this possibility is revisited... Phys.Rev.D72:033003,2005 Phys.Lett.B637:266-273,2006

Atmospheric neutrinos

- Wide range of v energy (0.1 GeV ~ 10⁴ GeV and beyond)
- Wide range of v baseline (10km downward ~ 13,000km upward)
- v_{μ} : $v_e \sim 2$:1 at production

3-flavor oscillation study

Through the matter effect in the Earth, we study on

- Mass hierarchy : resonance in multi-GeV ve or $\overline{v}e$
- CP δ
- θ_{23} octant
- : magnitude of the resonance

: interference btw two Δm^2 driven oscill.

ve-like and anti-ve-like sample

Matter effect fit in Super-K

•Best fit α =1 for NH, consistent w/ standard matter effect • $\Delta \chi^2$ =5.2 for α =0, Data disfavors zero matter-effect by >2 σ

electron's Up/Down ratio

Up($\cos\Theta < -0.4$) to Down($\cos\Theta > 0.4$) event ratio for multi-GeV electrons

Atmv data fit w/ fixed θ_{13}

•Mass hierarchy: $\Delta \chi^2 = \chi^2_{NH} - \chi^2_{IH} = -4.3$ (-3.1 expected)

•Under IH hypothesis, the probability to obtain -4.3 or less is 3.1% (sin² θ_{23} =0.6) and 0.7%(sin² θ_{23} =0.4).

•Under NH hypothesis, it is as large as 45% ($\sin^2\theta_{23}=0.6$)

Atmv data fit w/ T2K

Publicly available T2K data is used as an external constraints T2K's constraints on θ_{23} and Δm^2_{32} help sensitivity to mass hierarchy

•SK+T2K: $\Delta \chi^2 = \chi^2_{NH} - \chi^2_{IH} = -5.2$ (-3.8 exp'd for SK best point, -3.1 for combined best)

•Under IH hypothesis, the probability to obtain -5.2 or less is 2.4% $(\sin^2\theta_{23}=0.6)$ and $0.1\%(\sin^2\theta_{23}=0.4)$.

•Under NH hypothesis, it is 43% (sin² θ_{23} =0.6) Paper in preparation

Hyper-K sensitivity

Atmosphericv + J-PARC beam

Determination possible by 2~3 years $(\sin^2\theta_{23}=0.5)$

Resonance oscillation (MSW) for • $v_{\mu} \rightarrow v_{e}$ if Normal Hierarchy • $\overline{v}_{\mu} \rightarrow \overline{v}_{e}$ if Inverted Hierarchy

Search for V's induced by dark matters

- provide complemental information w/ direct detection experiments
- Sensitive to low mass (GeV/c²) WIMPs

Expected sensitivity for Solar WIMPs WIMP-proton cross section[pb] WIMP-nucleon cross section[pb]

47

v astophysics, v telescope

Why Supernova neutrinos?

Only neutrinos, with their extremely small interaction cross sections, can enable us to see into the interior of a star... John N. Bahcall, Phys. Rev. Lett. 12, 303 (1964)

Neutrinos hold the keys to solve many outstanding questions:

- What is the supernova explosion mechanism?
- What is the physics at high temperature and density?
- Do black holes form? How and when?
- What is the interior **environment** like?
- Was there a jet? An accretion disk?
- What nucleosynthesis products are made?
- What is the nature of physics at very high neutrino density?
- What are the properties of neutrinos?
- Which explosions are indeed core collapse?
-etc...

Slide adopted from Horiuchi@HK meeting

 Many information will be extracted: pointing, explosion mechanism (SASI etc), neutronization burst, interior temperature by NC events, instance of NS/BH formation

SK-Gd

Discovery of relic SN neutrinos is expected by O(1) sensitivity improvement
0.1% Gd loading to tag
ve+p→e+n, Gd+n→Gd+γs

R&D in test tank and water system construction going onStart SK-Gd in a few yrs

10-16MeV 16-28MeV Significance Model Total Eve/10yrs Eve/10yrs (10-28MeV) 2 energy bin Τν 8 MeV 11.3 19.9 31.2 5.3σ 6 MeV 11.3 13.5 24.8 4.3σ 4 MeV 7.7 4.8 12.5 2.5σ 1987a 2.1σ 5.1 6.8 11.9 BG 10 24 34

Model: Phys. Rev. D 79 (2009) 083013.

SRN measurement in Hyper-K

• Guaranteed signal to investigate the averaged SN explosion, and the fraction of dim-SN and BH formation

~100 SRN / 10 years (>17.5MeV) is expected

Solar neutrino physics

Day -----+---->Night

Ve: Electron neutrino

- Precision measurement of solar Ve to study $\sim 2\sigma$ tension between Ve and reactor \overline{Ve} (CPT violation or ?)
- Test various exotic scenarios by spectrum
- V astronomy
 - Time variation test w/ \sim 200vs/day
 - First measurement of hepv

Final remark

- Japan-based neutrino program will have rich physics with world-leading science outputs
 - Direct test of GUT
 - Full picture of neutrino oscillations (CPV, mass ordering, and others)
 - Variety of v astrophysics, telescope
- •Hyper-Kamiokande is the flagship experiment in the program
 - Ready-to-go design
 - Budget request is being issued in Japan