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Three Phases – Three Opportunities 

Standard Candle (?)  
•  SN theory 
•  Distance 
•  Flavor conversions 
•  Multi-messenger 
    time of flight 

Strong variations  
(progenitor, 3D effects, 
 black hole formation, …) 
• Testing astrophysics of 
   core collapse 
• Flavor conversion has 
   strong impact on signal 
   (Collective & MSW) 
 

EoS & mass dependence 
• Testing nuclear physics 
• Nucleosynthesis in  
   neutrino-driven wind 
• Particle bounds from 
   cooling speed (axions …) 
 
 

Burst Accretion Cooling 
SN standard candle? Astrophysics Nuclear physics 
SN theory Collective effects? Nucleosynthesis 
Timing Shock revival? Exotics/Axions 
Mass hierarchy Mass hierarchy? … 
… … 
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NH IH 

Spectral Splits 
in Inverted  
Hierarchy 

L resonance : ν1  ν2 
(Δmsol

2 , θ12) at 101 – 102 g/cc 

Always in neutrinos.  

Always adiabatic.  

Spectral 
Splits in 

H resonance : ν1/ν2       ν3 

(Δmatm
2 , θ13) at 103 – 104 g/cc 

In neutrinos for NH and in  
 antineutrinos for IH.  

Adiabaticity ≈ sin2θ13 

Dighe and Smirnov 
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Pantaleone (1992) 



Collective Effects 
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Duan, Fuller, Carlson, Qian (2005, 2006,…) 



Spectral Splits 
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Fogli, Lisi, Marrone and Mirizzi 

Nontrivial Evolution only for Inverted Hierarchy 
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Dasgupta, Dighe, Raffelt and Smirnov (PRL 2009) 

Spectral Splits 
in Inverted  
Hierarchy 

Spectral Splits 
in Normal  
Hierarchy  
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 Smeared 
Spectral 
Splits 

Many works, e.g., Esteban-Pretel et al, Friedland, Duan and Shalgar 



Multi-Angle Matter Effect 
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Esteban-Pretel, Mirizzi, Pastor, Tomas, Raffelt, Serpico, Sigl   



Symmetry Breaking 

16 May, ICRR Basudeb Dasgupta, TIFR Mumbai 11 



Symmetry Breaking 
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Mirizzi, Mangano, Saviano 
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Chakraborty, Hansen, Izagguire, Raffelt 
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Dasgupta and Mirizzi 
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undo the phase dispersion due to a large matter density. The line model behaves in this case
as a neutrino antenna, propagating a pulsating neutrino signal.

In the present work we will study the development of the temporal instability, choosing
several representative cases and comparing for each of them the results of the numerical
solution of the equations of motion with the linear stability analysis. In Sec. 2 we describe the
features of the non-stationary and inhomogeneous flavor evolution. We discuss the equations
of motion for time-dependent two-dimensional flavor evolution. We show how it is possible
to solve this problem by Fourier transforming these equations, obtaining a tower of ordinary
di↵erential equations for the di↵erent Fourier modes in space and time. We also present
the linear stability analysis of these equations, with explicit solutions for the line model. In
Sec. 3 we discuss the results of our study for di↵erent representative cases. We find a good
agreement between the results obtained with this two approaches in the linear regime, while
a dramatic amplification of the flavor conversions occur in the non-linear case due to the
interaction among the di↵erent pulsating modes, that get excited in a cascade. Finally in
Sec. 4 we comment about future developments and we conclude.

2 Setup of the flavor evolution

2.1 Equations of motion

We consider the situation that neutrinos and antineutrinos are emitted from a surface and
subsequently free-stream, but with forward scatterings with other neutrinos and antineutrinos
as well as the background matter. The equation of motion for such a stream of neutrinos is

i(@
t

+ v ·r
x

)%
E,v

= [H
E,v

, %

E,v

] , (2.1)

where we explicitly denote E,v dependence using subscripts. Of course % varies with time
and space, i.e., %(t,x). This space-time dependence is always understood, as also for other
medium-dependent quantities, e.g., the background electron density n

e

(t,x). For notational
clarity, hereafter we shall omit showing these dependencies wherever there is no scope for
confusion.

The Hamiltonian for flavor evolution in the collisionless limit is

H
E,v

= Hvac + Hmat + H
⌫⌫

, (2.2)

where, in the two flavor limit,

Hvac =
1

2E
U
✓

✓
m

2
1 0

0 m

2
2

◆
U†
✓

(2.3)

Hmat =
p
2G

F

✓
n

e

0
0 0

◆
(2.4)

H
⌫⌫

=
p
2G

F

Z
1

(2⇡)3
E

02
dE

02
dv

0(1� v · v0)%
E

0
,v

0
, (2.5)

where U
✓

is the mixing matrix and the integral over energy spans �1 to +1, with “negative”
E corresponding to antineutrinos of energy E, i.e., %̄

E

= �%�E

. Note the overall minus sign,
so that equations for neutrinos and antineutrinos are the same with the replacement E ! �E.
The integral over v corresponds to integrals over the two independent velocity components,
that are typically chosen such that %

E,v

(t,x) remains constant in the absence of oscillations.
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What is the “spectrum” ? 
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The vacuum oscillation frequency ! = |�m

2|/(2E) is a more convenient energy label
than E. Thus, one has ! > 0 for neutrinos and ! < 0 for antineutrinos. The density matrix
can be written as

%

!,v

=
Tr%

!,v

2
I +

�
⌫

2
g

!,v

✓
s

!,v

S

!,v

S

⇤
!,v

�s

!,v

◆
, (2.6)

where s

2 = 1 � |S|2, with s being 1 when no flavor change has occurred. �
⌫

is a suitable
normalization of the emission spectrum, defined by

Z 0

�1
d��

⌫

g

!,v

= �(�
⌫̄

e

� �
⌫̄

x

) , (2.7)

where d� = d! dv and �
⌫̄

e,x

are the flavor-dependent neutrino number fluxes at x. The
neutrino-antineutrino asymmetry parameter ✏ is given by

1 + ✏ = (�
⌫

e

� �
⌫

x

)/(�
⌫̄

e

� �
⌫̄

x

) . (2.8)

The equations of motion can then be written as

(@
t

+ v ·r
x

)P
!,v

=


�!B+ �L+ µ

Z
d�0(1� v · v0)P

!

0
,v

0

�
⇥P

!,v

. (2.9)

where � =
p
2G

F

n

e

and µ =
p
2G

F

�
⌫

. The vector P

!,v

= g

!,v

(ReS
!,v

, ImS

!,v

, s

!,v

)T ,
constructed from the density matrix, is a so-called polarization vector that encapsulates
the flavor composition, while B = (cos ✓, 0, sin ✓)T and L = (0, 0, 1)T are the analogous
vectors constructed from Hvac and Hmat, respectively. In this paper we present our results
for a normal neutrino mass ordering (m1 < m2), and for the inverted ordering one simply
transforms B ! �B.

The problem boils down to calculating P

!,v

(t,x), given their values at the source as a
function of time. Typically this boundary condition is taken to be stationary in time and
homogeneous over the source, which may naively suggest that the solution ought to respect
these symmetries as well. However, such a solution is often unstable to small spatial and
temporal fluctuations, and it is important to ascertain the role of spontaneous breaking of
these spatial and temporal symmetries.

2.2 Evolution of Fourier modes in the line-model

To study the role of these fluctuations concretely, we choose a toy-model of neutrino emis-
sion where the growth of these instabilities is easily calculable. We consider neutrinos
and antineutrinos emitted with energy E0, so that !0 = |�m

2|/(2E0), in two directions
v

L

= cos#
L

x̂+ sin#
L

ẑ and v

R

= cos#
R

x̂+ sin#
R

ẑ. The spectrum is given by

g(!,v) =
⇥� �(! + !0) + (1 + ✏)�(! � !0)

⇤⇥ ⇥
�(v � v

L

) + �(v � v

R

)
⇤
, (2.10)

which implies the normalization �
⌫

= (�
⌫̄

e

��
⌫̄

x

)/2. In this model, �
⌫

, �, and g are constant
along x, y, and in t but vary along z. Away from the source, the neutrino flavor composition
can depend on z, as well as x and t. The boundary conditions on P

!,v

will have to be
specified along both x and t at z = 0.
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The PDEs can be converted to a tower of ODEs by decomposing the polarization vectors
into their constituent Fourier modes. One writes

P

!,v

(t, x, z) =
X

p,k

e

�i(pt+kx)
P

p,k

!,v

(z) , (2.11)

where p, k are the temporal and spatial frequency modes of the polarization vector. Using
this decomposition, one gets a tower of equations for the Fourier modes P

p,k

!,v

labeled by p

and k,

v

z

@

z

P

p,k

!,v

= i(p+ v

x

k)Pp,k

!,v

� (!B� �L)⇥P

p,k

!,v

+ µ

v

X

p,k,!

0

P

p

0
,k

0

!

0
,v

0 ⇥P

p,k

!,v

, (2.12)

where µ

v

= µ(1 � v

L

· v
R

), v0 = v

R,L

for v = v

L,R

respectively and !

0 only picks up the
modes at ±!0. The velocity components, v

x

and v

z

, are di↵erent for the L and R modes and
thus there are multi-angle e↵ects in additional to the explicit spatial and temporal symmetry
breaking.

This set of ODEs, can be solved numerically with appropriate initial conditions for
P

p,k

!,v

(z = 0). We choose the initial condition as . . . .

2.3 Linearized stability analysis using Fourier modes

The complete flavor evolution even in this rather simplified model is quite complicated, and
it is useful to linearize the equations. To linear order in S, the EOMs simplify to

i(@
t

+ v ·r
x

)S
!,v

= (�! + �+ ✏µ

v

)S
!,v

� µ

v

Z
d�0

g

!

0
,v

0
S

!

0
,v

0
. (2.13)

One can again express S
!,v

using its Fourier transform,

S

!,v

(t, x, z) =
X

p,k

e

�i(pt+kx)
S

p,k

!,v

(z) , (2.14)

and take S

p,k

!,v

= Q

p,k

!,v

e

�iz⌦. The eigenvalue equation for the Fourier amplitudes Qp,k

!,v

is then
given by

✓�! � kv

x

� p+ �+ ✏µ

v

v

z

◆
Q
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!,v
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v

v

z

Z
d!

0
g

!

0
,v

0
Q
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!,v

0 = ⌦p,k

!,v

Q

p,k

!,v

. (2.15)

In the model we consider, there are only four neutrino momentum modes labeled by ! = ±!0

and v = v

L

and v

R

, and the above equation becomes an eigenvalue equation for the four
modes, with 4 eigenvalues ⌦

i=1,2,3,4, as a function of p and k. These eigenvalues are given by
the equation
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0
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+ ⌦ 0 (1 + ✏)µ
L
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L

0 !�L

+ ⌦ (1 + ✏)µ
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where,
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)/v
z,(L,R) (2.17)
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temporal fluctuations, and it is important to ascertain the role of spontaneous breaking of
these spatial and temporal symmetries.

2.2 Evolution of Fourier modes in the line-model

To study the role of these fluctuations concretely, we choose a toy-model of neutrino emis-
sion where the growth of these instabilities is easily calculable. We consider neutrinos
and antineutrinos emitted with energy E0, so that !0 = |�m

2|/(2E0), in two directions
v

L

= cos#
L

x̂+ sin#
L

ẑ and v

R

= cos#
R

x̂+ sin#
R

ẑ. The spectrum is given by
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) + �(v � v

R
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⇤
, (2.10)

which implies the normalization �
⌫

= (�
⌫̄

e

��
⌫̄

x

)/2. In this model, �
⌫

, �, and g are constant
along x, y, and in t but vary along z. Away from the source, the neutrino flavor composition
can depend on z, as well as x and t. The boundary conditions on P

!,v

will have to be
specified along both x and t at z = 0.
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Equation for Fourier modes 

Fourier decomposition 

Precession-like motion for the modes  

x

z

z=0
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θ
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θ
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v

Figure 1. Geometry of the line model used for the flavor evolution. Neutrinos and antineutrinos are
emitted in two directions in a plane from every point of an infinite linear source (angles have been
exaggerated for clarity). The flavor evolution is along ẑ, with fluctuations along x̂ and time.

2.2 Evolution of Fourier modes in the line model

To study the role of these fluctuations concretely, we choose as toy-model of neutrino emission
the line model where the growth of these instabilities is easily calculable. The geometry of
the model is shown in Fig. 1. Neutrinos and antineutrinos are emitted in the x� z plane, in
two directions v

L

= cos#
L

x̂+sin#
L

ẑ and v

R

= cos#
R

x̂+sin#
R

ẑ, as shown. The dynamics
is confined to this plane, though one may also think of this as a 3 dimensional problem with
rotational symmetry around the x-axis. We consider neutrinos and antineutrinos emitted
with a single energy E0, so that

!0 =
|�m

2|
2E0

. (2.12)

This fixes the frequency scale of flavor evolution. Therefore, the spectrum is given by

g

!,v

=
⇥� �(! + !0) + (1 + ✏)�(! � !0)

⇤⇥ ⇥
�(v � v
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) + �(v � v

R

)
⇤
, (2.13)

which implies the normalization �
⌫

= (�
⌫̄

e

� �
⌫̄

µ

)/2. �
⌫

and � are constant along x and in
t but vary along z. Away from the source, the neutrino flavor composition can depend on z,
as well as x and t. The boundary conditions on P

!,v

will have to be specified along both x

and t at z = 0, and break the corresponding space-time translation symmetries.
The flavor evolution can be studied using Fourier modes of the polarization vectors.

Eq. (2.9) can be converted to a tower of ordinary di↵erential equations by decomposing the
polarization vectors into their constituent Fourier modes labeled by p and k [23–25]. One
writes

P

!,v
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e
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P

p,k
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(z) , (2.14)

where p, k are the temporal and spatial frequency modes of the polarization vector. Using
this decomposition, one gets a tower of equations for the Fourier modes Pp,k
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. (2.15)

For our model, we have the simplifications, µ
v

= µ(1� v

L

· v
R

), !0 only picks up the modes
at ±!0, and v = v

L

or v
R

. The velocity components, v
x

and v

z

, being di↵erent for the L and
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The PDEs can be converted to a tower of ODEs by decomposing the polarization vectors
into their constituent Fourier modes. One writes
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(t, x, z) =
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e
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!,v

(z) , (2.11)

where p, k are the temporal and spatial frequency modes of the polarization vector. Using
this decomposition, one gets a tower of equations for the Fourier modes P
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where µ

v

= µ(1 � v

L

· v
R

), v0 = v

R,L

for v = v

L,R

respectively and !

0 only picks up the
modes at ±!0. The velocity components, v

x

and v

z

, are di↵erent for the L and R modes and
thus there are multi-angle e↵ects in additional to the explicit spatial and temporal symmetry
breaking.

This set of ODEs, can be solved numerically with appropriate initial conditions for
P

p,k

!,v

(z = 0). We choose the initial condition as . . . .

2.3 Linearized stability analysis using Fourier modes

The complete flavor evolution even in this rather simplified model is quite complicated, and
it is useful to linearize the equations. To linear order in S, the EOMs simplify to
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One can again express S
!,v

using its Fourier transform,

S
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(t, x, z) =
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S

p,k
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(z) , (2.14)

and take S
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= Q
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�iz⌦. The eigenvalue equation for the Fourier amplitudes Qp,k
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is then
given by
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In the model we consider, there are only four neutrino momentum modes labeled by ! = ±!0

and v = v

L

and v

R

, and the above equation becomes an eigenvalue equation for the four
modes, with 4 eigenvalues ⌦

i=1,2,3,4, as a function of p and k. These eigenvalues are given by
the equation
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In principle this is a solvable eigenvalue problem  
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Neutrinos emitted from a surface, along two directions L and R 
The initial condition along x are noisy and not steady 
 
How does the flavor content evolve along z? 
How does it break the x and t translation symmetry? 
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The PDEs can be converted to a tower of ODEs by decomposing the polarization vectors
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thus there are multi-angle e↵ects in additional to the explicit spatial and temporal symmetry
breaking.
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Unlike in the case of a symmetric set-up with #

L

= #

R

, there is no k ! �k or p ! �p

symmetry and the eigenvalues are not unchanged under a flip of the mass ordering. These
are however artifacts of explicitly breaking the L $ R symmetry, so as to mimic a multi-angle
matter e↵ect. In a truly multi-angle scenario with a L $ R symmetric velocity distribution
with many modes, these artifacts are avoided. Note, however the characteristic equation is
real and will only give real or complex-conjugate eigenvalues.

Out[142]= Out[143]=

Out[151]= Out[145]=

Figure 1. Footprints of instability in the µ� � plane for various values of k and p.

The eigenvalues can also be calculated in a closed form, but these general expressions
are not particularly illuminating. So we numerically evaluate these eigenvalues, and check if
any of the eigenvalues have a large imaginary part that would signal rapid flavor conversion.
Fig.0, shows the largest imaginary part of any of the eigenvalues ⌦, for a range of � and µ

and for specific values of p and k. The crucial point to note is that the eigenvalues depend
on � only through a combination �� p, and there is always a p that can remove the e↵ect of
matter for all modes, allowing an instability for arbitrary �. For a small number of modes (as
we have chosen), a similar e↵ect can also be produced by a choosing a large k (bottom-left
panel), but some residual dispersion in the matter e↵ect will remain in a truly multi-angle
set-up.
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Capozzi, Dasgupta, Mirizzi (2016, JCAP) 
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Figure 2. Footprints of instability for various values of spatial and temporal frequency modes, k and
p respectively, on the plane of the matter potential � and the neutrino potential µ, all in units of
!0. The warmer colors represent larger magnitudes of the imaginary part of the eigenvalues given by
Eq. (2.19). The dark blue color signifies that all eigenvalues are real. The dashed white line represents
a correlation between µ and �, e.g., in a model where both are varying with z (see Sec. 3.2). Note
that while there are no instabilities for the model shown here as long as k = 0 and p = 0 (top left
panel), instabilities appear when either k 6= 0 or p 6= 0 (all other panels).

The eigenvalues for this model can be calculated in a closed form, but these general
expressions are not particularly illuminating. So we numerically evaluate these eigenvalues,
and check if any of the eigenvalues have a large imaginary part that would signal rapid flavor
conversions. Fig. 2, shows the largest imaginary part of any of the eigenvalues ⌦, for a range
of � and µ and for specific values of p and k. We see that for certain large values of � and
µ, for which there were no instabilities in the stationary and homogeneous scenario (top-left
panel), become unstable to a pulsating mode with large p (right panels) as the “nose-like”
feature extends into these new regions. For a small number of modes as we have chosen here,
a similar e↵ect is produced by a choosing a large k (bottom-left panel) but this cancellation
becomes very fine-tuned when more velocity modes are included.
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Figure 3. Amplitudes of the o↵-diagonal components of the di↵erent np modes, Aeµ, as a function
of the distance from the neutrino source, z, and of the Fourier mode with index np, for ⌧� = 1 (left
panel), 30 (middle panel) and 10 (right panel) respectively. The closer is A

eµ to 0 (red color in the
plot), the stronger are the flavor conversions.
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Figure 4. Comparison linear vs nonlinear growth of Aeµ for di↵erent Fourier modes for ⌧� = 1 (left
panel), 30 (middle panel) and 10 (right panel) respectively.

The instability develops only at z & 10 for n

p

⇠ 50. Modes with n

p

. 50 grow till
A

eµ' �1, when nonlinearity takes over, while larger n

p

modes are suppressed by the
large p that mimics the matter suppression.

In Fig. 4, we show that the above observations are justified by comparing the results
of the nonlinear computation (continuous curves) with the predictions of linearized stability
analysis (dashed curves) for the amplitudes A

eµ of specific n

p

modes (n
p

= 0, 50, and 90).
The key points to be noted are

• In the case of ⌧
�

= 1, the mode at n

p

= 90 is the most unstable and grows by ⇠ 10
orders of magnitude till z ' 6. In the same range the mode at n

p

= 50 grows by only
2 orders of magnitude, while the n

p

= 0 mode is stable. Till this distance from the
source there is perfect agreement between the non-linear and the linear evolution for
these three modes.
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panel), 30 (middle panel) and 10 (right panel) respectively. The closer is A

eµ to 0 (red color in the
plot), the stronger are the flavor conversions.

10

5

0

10

5

0

 = 0pn

 = 50pn

 = 90pn

linear

10

5

0

∞=λτ =10λτ=30λτ

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

10−

5−

0

z z z

µe
A

Figure 4. Comparison linear vs nonlinear growth of Aeµ for di↵erent Fourier modes for ⌧� = 1 (left
panel), 30 (middle panel) and 10 (right panel) respectively.

The instability develops only at z & 10 for n

p

⇠ 50. Modes with n

p

. 50 grow till
A

eµ' �1, when nonlinearity takes over, while larger n

p

modes are suppressed by the
large p that mimics the matter suppression.

In Fig. 4, we show that the above observations are justified by comparing the results
of the nonlinear computation (continuous curves) with the predictions of linearized stability
analysis (dashed curves) for the amplitudes A

eµ of specific n

p

modes (n
p

= 0, 50, and 90).
The key points to be noted are

• In the case of ⌧
�

= 1, the mode at n

p

= 90 is the most unstable and grows by ⇠ 10
orders of magnitude till z ' 6. In the same range the mode at n

p

= 50 grows by only
2 orders of magnitude, while the n

p

= 0 mode is stable. Till this distance from the
source there is perfect agreement between the non-linear and the linear evolution for
these three modes.
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