ICRR Seminar, Kashiwa 16 May 2016

hotel

Temporal Instability of Supernova Neutrinos

Basudeb Dasgupia TIFR, Mumbai

Sanduleak –69 202

Supernova 1987A 23 February 1987

29 MEARS AGO

IN CALAXY NEAR US

Aim of the Game

Burst	Accretion	Cooling
SN standard candle?	Astrophysics	Nuclear physics
SN theory	Collective effects?	Nucleosynthesis
Timing	Shock revival?	Exotics/Axions
Mass hierarchy	Mass hierarchy?	

MSW Effects

Neutrino-Neutrino Interactions

Collective Effects

Duan, Fuller, Carlson, Qian (2005, 2006,...)

Basudeb Dasgupta, TIFR Mumbai

16 May, ICRR

Nontrivial Evolution only for Inverted Hierarchy

Fogli, Lisi, Marrone and Mirizzi

Basudeb Dasgupta, TIFR Mumbai

16 May, ICRR

Multiple Splits

Dasgupta, Dighe, Raffelt and Smirnov (PRL 2009)

Basudeb Dasgupta, TIFR Mumbai

16 May, ICRR

Multi-Angle Effects

Many works, e.g., Esteban-Pretel et al, Friedland, Duan and Shalgar

Multi-Angle Matter Effect

Esteban-Pretel, Mirizzi, Pastor, Tomas, Raffelt, Serpico, Sigl

Mirizzi, Mangano, Saviano

Instability Footprint

Chakraborty, Hansen, Izagguire, Raffelt

Temporal Instability

Dasgupta and Mirizzi

Neutrino Flavor Evolution

$$i(\partial_t + \mathbf{v} \cdot \nabla_{\mathbf{x}})\varrho_{E,\mathbf{v}} = [\mathsf{H}_{E,\mathbf{v}}, \varrho_{E,\mathbf{v}}]$$

$$\begin{aligned} \mathsf{H}_{E,\mathbf{v}} &= \mathsf{H}_{\mathrm{vac}} + \mathsf{H}_{\mathrm{mat}} + \mathsf{H}_{\nu\nu} \\ \mathsf{H}_{\mathrm{vac}} &= \frac{1}{2E} \mathsf{U}_{\theta} \begin{pmatrix} m_{1}^{2} & 0 \\ 0 & m_{2}^{2} \end{pmatrix} \mathsf{U}_{\theta}^{\dagger} \\ \mathsf{H}_{\mathrm{mat}} &= \sqrt{2} G_{F} \begin{pmatrix} n_{e} & 0 \\ 0 & 0 \end{pmatrix} \\ \mathsf{H}_{\nu\nu} &= \sqrt{2} G_{F} \int \frac{1}{(2\pi)^{3}} E'^{2} dE'^{2} d\mathbf{v}' (1 - \mathbf{v} \cdot \mathbf{v}') \varrho_{E',\mathbf{v}'} \end{aligned}$$

Basudeb Dasgupta, TIFR Mumbai

What is the "spectrum"?

$$\varrho_{\omega,\mathbf{v}} = \frac{\mathrm{Tr}\varrho_{\omega,\mathbf{v}}}{2}\mathbf{I} + \frac{\Phi_{\nu}}{2}g_{\omega,\mathbf{v}}\left(\begin{array}{cc}s_{\omega,\mathbf{v}} & S_{\omega,\mathbf{v}}\\S_{\omega,\mathbf{v}}^{*} & -s_{\omega,\mathbf{v}}\end{array}\right)$$
$$\int_{-\infty}^{0} d\Gamma \,\Phi_{\nu}g_{\omega,\mathbf{v}} = -(\Phi_{\bar{\nu}_{e}} - \Phi_{\bar{\nu}_{x}})$$

Basudeb Dasgupta, TIFR Mumbai

Fourier Modes

Precession-like motion for the modes

$$(\partial_t + \mathbf{v} \cdot \nabla_{\mathbf{x}}) \mathbf{P}_{\omega, \mathbf{v}} = \left[-\omega \mathbf{B} + \lambda \mathbf{L} + \mu \int d\Gamma' (1 - \mathbf{v} \cdot \mathbf{v}') \mathbf{P}_{\omega', \mathbf{v}'} \right] \times \mathbf{P}_{\omega, \mathbf{v}}$$

Fourier decomposition

$$\mathbf{P}_{\omega,\mathbf{v}}(t,x,z) = \sum_{p,k} e^{-i(pt+kx)} \mathbf{P}_{\omega,\mathbf{v}}^{p,k}(z)$$

Equation for Fourier modes

$$v_z \partial_z \mathbf{P}^{p,k}_{\omega,\mathbf{v}} = i(p + v_x k) \mathbf{P}^{p,k}_{\omega,\mathbf{v}} - (\omega \mathbf{B} - \lambda \mathbf{L}) \times \mathbf{P}^{p,k}_{\omega,\mathbf{v}} + \sum_{p',k',\omega',\mathbf{v}'} \mu_v \, \mathbf{P}^{p-p',k-k'}_{\omega',\mathbf{v}'} \times \mathbf{P}^{p',k'}_{\omega,\mathbf{v}}$$

Basudeb Dasgupta, TIFR Mumbai

Linearization

$$i(\partial_t + \mathbf{v} \cdot \nabla_{\mathbf{x}}) S_{\omega, \mathbf{v}} = (-\omega + \lambda + \epsilon \mu_v) S_{\omega, \mathbf{v}} - \mu_v \int d\Gamma' g_{\omega', \mathbf{v}'} S_{\omega', \mathbf{v}'}$$

Use Fourier decomposition

$$S_{\omega,\mathbf{v}}(t,x,z) = \sum_{p,k} e^{-i(pt+kx)} S_{\omega,\mathbf{v}}^{p,k}(z)$$

Get an eigenvalue equation

$$\left(\frac{-\omega - kv_x - p + \lambda + \epsilon\mu_v}{v_z}\right)Q^{p,k}_{\omega,\mathbf{v}} - \frac{\mu_v}{v_z}\int d\omega' \,g_{\omega',\mathbf{v}'}Q^{p,k}_{\omega,\mathbf{v}'} = \Omega^{p,k}_{\omega,\mathbf{v}}Q^{p,k}_{\omega,\mathbf{v}}$$

In principle this is a solvable eigenvalue problem

Neutrinos emitted from a surface, along two directions L and R The initial condition along x are noisy and not steady

How does the flavor content evolve along z? How does it break the x and t translation symmetry?

Basudeb Dasgupta, TIFR Mumbai

Explicit Computation

$$\operatorname{Det} \begin{pmatrix} \omega_{+L} + \Omega & 0 & (1+\epsilon)\mu_L & -\mu_L \\ 0 & \omega_{-L} + \Omega & (1+\epsilon)\mu_L & -\mu_L \\ (1+\epsilon)\mu_R & -\mu_R & \omega_{+R} + \Omega & 0 \\ (1+\epsilon)\mu_R & -\mu_R & 0 & \omega_{-R} + \Omega \end{pmatrix} = 0$$

$$\omega_{\pm(L,R)} = (\pm \omega_0 + k v_{x,(L,R)} + p - \lambda - \epsilon \mu_v) / v_{z,(L,R)}$$
$$\mu_{(L,R)} = \mu_v / v_{z,(L,R)}.$$

Basudeb Dasgupta, TIFR Mumbai

Without Noise

With Noise

Capozzi, Dasgupta, Mirizzi (2016, JCAP)

$\tau_{\lambda} = \infty$ $\tau_{\lambda} = 30$

Fully Nonlinear Evolution

Linear vs. Nonlinear

More work in progress

Moving Footprints

Distance from the center of SN