Spin-I particle and the ATLAS Diboson excess

Tomohiro Abe (KEK)

based on the works

1507.01185: TA, Ryo Nagai, Shohei Okawa, Masaharu Tanabashi 1507.01681: TA, Teppei Kitahara, Mihoko Nojiri

> seminar at ICRR 2015.8.6

ATLAS diboson excess

ATLAS EXOT-2013-008

• $pp \rightarrow X \rightarrow WZ/WW/ZZ \rightarrow two fat jets$

- * mass of X ~ 2TeV ?
- * local significance: WZ 3.4 σ , WW 2.6 σ , ZZ 2.9 σ
- * global significance: WZ 2.5 σ

Same process in CMS

Other final states from diboson

Situation of diboson in each channel

final states	ATLAS	CMS
only jets	excess	no excess
with leptons	no excess	no excess

- Excess is only in $pp \rightarrow VV \rightarrow jets$ at the ATLAS
 - * logal: WZ 3.4σ, WW 2.6σ, ZZ 2.9σ
 - * global: WZ 2.5σ
- Excess might be statistical fluctuation
- But it is good exercise to consider what kind of BSM can explain the excess

What we know about the excess

• New particles (X) is a boson

★ It decays into WZ/WW/ZZ

WZ/WW/ZZ are not good separation

- * $|m_j m_V| < 13 \text{GeV}$
- ★ one or two channels are enough to be explained

Works in market (more than 30 papers)

• Spin 0 (S \rightarrow WW, S \rightarrow ZZ)

1507.02483, 1507.03553, 1507.04431, 1507.05028, 1507.05310, 1507.06312

• Spin 1 (W' \rightarrow WZ, Z' \rightarrow WW)

1506.03751, 1506.03931, 1506.04392, 1506.05994, 1506.06064, 1506.06736, 1506.06767, 1506.07511, 1506.08688, 1507.00013, 1507.0268, 1507.00900, 1507.01185, 1507.01638, 1507.01681, 1507.01914, 1507.01923, 1507.02483, 1507.03098, 1507.03428, 1507.03553, 1507.03940, 1507.04431, 1507.05028, 1507.05299, 1507.05310, 1507.06018, 1507.06312, 1507.07102, 1507.07406, 1507.07557, 1507.08273, 1508.00174

• Spin 2

1507.03553, 1507.06312

• others (tri-boson can mimic diboson signal)

1506.06739

In this talk

• focus on spin 1 new particle

- ★ add new SU(2) gauge symmetry
- ★ many models can be constructed (choice of Higgs and fermion sectors)

discuss model independent features

- ★ perturbative unitarity 1507.01185 (TA, Nagai, Okawa, Tanabashi)
- ★ prospect for 13TeV 1507.01681 (TA, Kitahara, Nojiri)

discuss two example models

- * 221 (or 3-site) model JHEP 1301 082 (TA, Chen, He)
- ★ partially composite (or triangle) model PRD88 015019 (TA, Kitano)

talk plan

• perturbative unitarity

★ show some relations among couplings

• 221 model

- ★ as an example satisfying the coupling relations derived from perturbative unitary
- ★ model is not renormalizable

partially composite model

- ★ model is renormalizable
- prospect for LHC 13 TeV

• Summary

talk plan

• perturbative unitarity

 \star show some relations among couplings

• 221 model

- as an example satisfying the coupling relations derived from perturbative unitary
- ★ model is not renormalizable
- partially composite model
 * model is renormalizable
- prospect for LHC 13 TeV
- Summary

WW scattering at high energy (longitudinal modes)

- naively, amplitude ~ a $E^4 + b E^2 + \cdots$
 - ★ if a \neq 0, b \neq 0 then perturbative unitarity is broken
 - \star a = 0 and b= 0 are required to keep perturbative calculation

• Unitarity sum rules

- \star some coupling relations are required for a = b = 0
- * example in SM (U(1) gauge coupling =0 for simplicity)

$$\mathcal{M} \simeq (g_{WWWW} - g_{WWW}^2) \frac{\mathbf{E^4}}{\mathbf{m_W^4}} + \frac{1}{m_W^2} (4m_W^2 g_{WWWW} - 3m_W^2 g_{WWW}^2 - g_{WWh}^2) \frac{\mathbf{E^2}}{\mathbf{m_W^2}} + \cdots$$

$$0 = g_{WWWW} - g_{WWW}^2$$

$$0 = 4m_W^2 g_{WWWW} - 3m_W^2 g_{WWW}^2 - g_{WWW}^2$$

Unitarity sum rules with W'

• In SM example

★ WWh coupling relates with WWW coupling

 $0 = g_{WWWW} - g_{WWW}^2$ $0 = 4m_W^2 g_{WWWW} - 3m_W^2 g_{WWW}^2 - g_{WWh}^2$

• unitarity sum rules with W'

- ★ WWh and WW'h couplings relate with WWW, WWW' couplings
- ★ model independent feature
- *** assumption**: theory keeps "perturbative" unitarity

Sum rules in W, W', and CP-even Higgses system

- WW \rightarrow WW $g_{WWWW} = \sum_{V} g_{WWV}^2$ $4m_W^2 g_{WWWW} = \sum_{V} 3m_V^2 g_{WWV}^2 + \sum_{h} g_{WWh}^2$
- WW \rightarrow WW' $g_{WWWW'} = \sum_{V} g_{WWV} g_{WW'V}$ $(3m_W^2 + m_{W'}^2) g_{WWWW'} = \sum_{V} 3m_V^2 g_{WWV} g_{WW'V} + \sum_{h} g_{WWh} g_{WW'h}$

• WW \rightarrow W'W', WW' \rightarrow WW'

$$g_{WWW'W'} = \sum_{V} g_{WWV} g_{W'W'V}$$

$$= \sum_{V} g_{WW'V} g_{WW'V}$$

$$(2m_{W}^{2} + 2m_{W'}^{2}) g_{WWW'W'} = \sum_{V} \left(3m_{V}^{2} g_{WW'V}^{2} - \frac{1}{m_{V}^{2}} 2g_{WW'V}^{2} (m_{W}^{2} - m_{W'}^{2})^{2} \right) + \sum_{h} g_{WW'h}^{2}$$

WW → WW and WWW' coupling

• $WW \rightarrow WW$ amplitude

★ require this satisfies perturbative unitarity at $m_W << E << m_{W'}$

$$\mathcal{M} \sim (g_{WWWW} - g_{WWW}^2) \frac{E^4}{m_W^4} \qquad (g_{WWWW} - g_{WWW}^2) \frac{m_{W'}^4}{m_W^4} < 32\pi$$

 \star from this relation and sum rule

$$g_{WWW'}^2 = (g_{WWWW} - g_{WWW}^2) < 32\pi \frac{m_W^4}{m_{W'}^4}$$

* order $g_{WWW'} \sim (m_w/m_{W'})^2$

introduce O(1) parameter: ξ_v

$$g_{WWW'} = \xi_V \frac{m_W^2}{m_{W'}^2} g_{WWW}$$

Sum rules in W, W', and CP-even Higgses system

• WW \rightarrow WW $g_{WWWW} = \sum_{V} g_{WWV}^2$ $4m_W^2 g_{WWWW} = \sum_{V} 3m_V^2 g_{WWV}^2 + \sum_{h} g_{WWh}^2$

• WW
$$\rightarrow$$
 WW' $g_{WWW'} = \sum_{V} g_{WWV} g_{WW'V}$
 $(3m_W^2 + m_{W'}^2) g_{WWW'} = \sum_{V} 3m_V^2 g_{WWV} g_{WW'V} + \sum_{h} g_{WWh} g_{WW'h}$

• WW \rightarrow W'W', WW' \rightarrow WW'

$$g_{WWW'W'} = \sum_{V} g_{WWV} g_{W'W'V}$$

= $\sum_{V} g_{WW'V} g_{WW'V}$
 $(2m_{W}^{2} + 2m_{W'}^{2})g_{WWW'W'} = \sum_{V} \left(3m_{V}^{2}g_{WW'V}^{2} - \frac{1}{m_{V}^{2}}2g_{WW'V}^{2}(m_{W}^{2} - m_{W'}^{2})^{2}\right) + \sum_{h} g_{WW'h}^{2}$

WW'h coupling and WWh coupling

• combine sum rules and ξ_v , we find

$$g_{WW'h}^2 = \xi_V^2 g_{WWh}^2$$

- $\star \xi_V = O(1)$
- * $g_{WWW'} = \xi_V (m_w/m_{W'})^2 g_{WWW}$

• Br(W' \rightarrow Wh) ~ Br(W' \rightarrow WW)

$$\frac{\Gamma(W' \to Wh)}{\Gamma(W' \to WW)} \simeq \left(\frac{g_{WWh}}{g_{WWh}^{\rm SM}}\right)^2 \left(\frac{g_{WWW}^{\rm SM}}{g_{WWW}}\right)^2$$

• we find $\Gamma(W' \rightarrow Wh) \sim \Gamma(W' \rightarrow WW)$

$$\Gamma(W' \to Wh) \simeq \frac{1}{192\pi} m_{W'} g_{WW'h}^2 \frac{1}{m_W^2}$$
$$= \frac{1}{192\pi} m_{W'} \xi_V^2 g_{WWh}^2 \frac{1}{m_W^2}$$
$$= \frac{1}{192\pi} m_{W'} \xi_V^2 g_{WWW}^2 \frac{g_{WWh}^2}{g_{WWh}^2} \left(\frac{g_{WWW}^{SM}}{g_{WWh}^{SM}}\right)^2$$

• $\Gamma(W' \rightarrow WW) \qquad \Gamma(W' \rightarrow WW) \simeq \frac{1}{192\pi} m_{W'} \xi_V^2 g_{WWW}^2$

$$\Gamma(W' \rightarrow Wh) \sim \Gamma(W' \rightarrow WW)$$

Consequences of the sum rules

- $g_{WWW'} = \xi_V (m_W/m_{W'})^2 g_{WWW}$
- $(g_{WW'h})^2 = \xi_V^2 (g_{WWh})^2$
- Br(W' \rightarrow Wh) \sim Br(W' \rightarrow WW)
 - ★ these relation are true in models which respect perturbative calculations
 - ★ the third relation is usually explained as a consequence of the equivalence theorem
 - ★ non-perturbative models does not respect these relations

constraint on parameter space

- parameter choice
 - \star m_{W'} = 2TeV
 - $\star g_{WWh} = g_{WWh}^{SM}$
 - $\star g_{W'ff} = \xi_f g_{Wff}^{SM}$
- exclusion
 - ★ cyan: $W' \rightarrow Iv$
 - ★ green: W' → di-jets
 - ★ gray : $W' \rightarrow Wh$
- Vh exclude $\sigma > 7$ fb
- small width prefere small ξ_v

talk plan

• perturbative unitarity

* show some relations among couplings

• 221 model

- ★ as an example satisfying the coupling relations derived from perturbative unitary
- ★ model is not renormalizable
- partially composite model
 * model is renormalizable
- prospect for LHC 13 TeV
- Summary

221 model (or 3-site model)

- $SU(2)_0 \times SU(2)_1 \times U(1)_2 \rightarrow U(1)_{QED}$
- two Higgs doublet
 - ★ H_1 : $SU(2)_0 \times SU(2)_1 \rightarrow SU(2)_v$
 - ★ H_2 : $SU(2)_1 \times U(1)_2 \rightarrow U(1)_v$
 - ★ two CP-even scalars
 - ★ six would-be NG bosons
- schematic picture (moose notation)

221 model (or 3-site model)

boson sector

- ★ spin 1: W', Z', W, Z, photon
- ★ spin 0: two CP-even
- ★ we can use the results from perturbative unitarity
- \star h = h₁ cos a + h₂ sin a

• fermion

- * ψ_L : (SU(2)₀, SU(2)₁, U(1)₂) =(2, 1, 1/6) or (2, 1, -1/2)
- * ψ_{R} : (SU(2)₀, SU(2)₁, U(1)₂) =(1, 1, Q_{QED})
- \star coupling to SU(2)₁ is given by higher dimensional operator

$$\frac{x_f}{v_1^2} \ \bar{\psi}_L i \gamma^\mu (H_1 \overleftrightarrow{D}_\mu H_1^\dagger) \bar{\psi}_L$$

★ Yukawa is also given by higher dimensional operator

$$\frac{1}{\Lambda}\bar{q}_L H_1 H_2 \begin{pmatrix} y_u & 0\\ 0 & y_d \end{pmatrix} \begin{pmatrix} u_R\\ d_R \end{pmatrix} + (h.c.) + (\text{lepton sector})$$

A benchmark: $v_1 >> v_2$ ($v_i = \langle H_i \rangle$)

$$\xi_V = \frac{g_{W1}}{g_{W0}}. \qquad \xi_f = \frac{1}{\xi_V} \left(1 - x_f (1 + \xi_V^2) \right)$$

• $\sigma > 5fb$ at $\xi_f = 0.2$

• If
$$x_f = 0$$

* $\xi_V \xi_f = 1$
* $\xi_V = 5, \xi_f = 0.2$ for $\sigma > 5fb$
* width = 80GeV

- * $\xi_V \xi_f < 1$
- * ξ_V < 5, ξ_f = 0.2 for σ>5fb
- ★ width < 80GeV
- * (width = 20GeV for $x_f = 0.08$)
- ★ (width = 50GeV for $x_f = 0.01$)

summary of 221 model

- satisfies sum rules
- some parameter space where $\sigma(WZ+WW) > 5fb$
- model is non-renormalizable
 - ★ Yukawa is dim5 operator
 - \star dim6 operator for the fermion coupling to SU(2)₁ to get narrow width
- several ways to make model renormalizable
 - ★ add new scalar for Yukawa interaction
 - \star or add SU(2)₁ vector like fermions

talk plan

perturbative unitarity

* show some relations among couplings

• 221 model

- as an example satisfying the coupling relations derived from perturbative unitary
- ★ model is not renormalizable

partially composite model

- ★ model is renormalizable
- prospect for LHC 13 TeV

• Summary

partially composite model

- $SU(2)_0 \times SU(2)_1 \times U(1)_2 \rightarrow U(1)_{QED}$
- three Higgs doublet
 - * H_1 : $SU(2)_0 \times SU(2)_1 \rightarrow SU(2)_v$
 - ★ H_2 : $SU(2)_1 \times U(1)_2 \rightarrow U(1)_v$
 - ★ H_3 : $SU(2)_0 \times U(1)_2 \rightarrow U(1)_v$
 - ★ three CP-even scalars + one CP-odd + charged Higgs
 - ★ six would-be NG bosons
- schematic picture (moose notation)

partially composite model

boson sector

- ★ spin 1: W', Z', W, Z, photon
- * spin 0: h, H, H', A^0 , H^{\pm}
- * We cannot use the results from sum rules (due to CP-odd and charged Higges)

• fermion

- * ψ_{L} : (SU(2)₀, SU(2)₁, U(1)₂) =(2, 1, 1/6) or (2, 1, -1/2)
- * ψ_{R} : (SU(2)₀, SU(2)₁, U(1)₂) =(1, 1, Q_{QED})
- \star Yukawa is given by H₃

$$\mathcal{L}^{\text{Yukawa}} = -\bar{Q}^{i}H_{3}\begin{pmatrix} y_{u}^{ij} & 0\\ 0 & y_{d}^{ij} \end{pmatrix} \begin{pmatrix} u_{R}^{j}\\ d_{R}^{j} \end{pmatrix} + (h.c.) + (\text{lepton sector})$$

model parameters

• 13 parameters

- ★ 4 known parameters: $v, \alpha, m_Z, m_h,$
- ★ 4 unknown masses: $m_{Z'}, m_{H'}, m_H, m_A,$
- * three couplings: $\kappa_F, \kappa_Z, g_{WW'H'}$ ($\kappa_F = g_{hff}/g_{hff}^{SM}, \kappa_Z = g_{hZZ}/g_{hZZ}^{SM}$)
- ***** two others: $r, v_3,$ $(r = v_2/v_1)$

• We take

* $m_H = m_{H'} = m_A = 2 \text{TeV}$ * $\kappa_F = 1, \kappa_Z \sim 1, g_{WW'H'} = 0$

★
$$m_H = m_{H'} = m_A = 2\text{TeV}$$
, $r = 0.13$, $v_3 = 200 \text{ GeV}$
★ width is narrow (20 GeV for $m_{W'} = 2\text{TeV}$)

results

talk plan

perturbative unitarity

* show some relations among couplings

• 221 model

- as an example satisfying the coupling relations derived from perturbative unitary
- ★ model is not renormalizable
- partially composite model
 * model is renormalizable
- prospect for LHC 13 TeV

• Summary

95% exclusion limit

- \star W' width = 25GeV
- \star This is model independent result

talk plan

perturbative unitarity

* show some relations among couplings

• 221 model

- as an example satisfying the coupling relations derived from perturbative unitary
- ★ model is not renormalizable
- partially composite model
 * model is renormalizable
- prospect for LHC 13 TeV

• Summary

Summary

• diboson excess around 2TeV by the ATLAS

- \star CMS does not find the excess
- ★ no excess with leptonic decay channel
- * In this talk we discussed spin-1 new particles (W', Z')

• perturbative unitarity

- $\star g_{WWW_2} = \xi_V (m_W/m_{2W'})^2 g_{WWW}$
- $\star g_{WW'h} = \xi_V g_{WWh}$
- ★ Br(W' → Wh) ~ Br(W' → WW)
- \star if these are not satisfied, then we need non-perturbative calculations

• two model examples

- ★ 221 model
 - * satisfying the perturbative unitarity sum rules
 - * UV completion is needed to make model renormalizable
- ★ partially composite model
 - * renormalizable model

• prospect for LHC 13 TeV

★ less than 10 fb-1 is enough to exclude the 2TeV excess