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ATLAS diboson excess
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Figure 5: Background-only fits to the dijet mass (mj j) distributions in data (a) after tagging with the WZ selection,
(b) after tagging with the WW selection and (c) after tagging with the ZZ selection. The significance shown in
the inset for each bin is the di↵erence between the data and the fit in units of the uncertainty on this di↵erence.
The significance with respect to the maximum-likelihood expectation is displayed in red, and the significance when
taking the uncertainties on the fit parameters into account is shown in blue. The spectra are compared to the signals
expected for an EGM W 0 with mW0 = 1.5, 2.0, or 2.5 TeV or to an RS graviton with mGRS = 1.5 or 2.0 TeV.

to the shape of the signal, and N is a log-normal distribution for the nuisance parameters, ✓, modelling
the systematic uncertainty on the signal normalisation. The expected number of events is the bin-wise
sum of the events expected for the signal and background: nexp

= nsig

+ nbg

. The number of expected
background events in dijet mass bin i, ni

bg, is obtained by integrating dn/dx obtained from eqn. (1) over
that bin. Thus nbg

is a function of the dijet background parameters p1, p2, p3. The number of expected
signal events, nsig

, is evaluated based on MC simulation assuming the cross section of the model under
test multiplied by the signal strength and including the e↵ects of the systematic uncertainties described in

16
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Figure 5: Background-only fits to the dijet mass (mj j) distributions in data (a) after tagging with the WZ selection,
(b) after tagging with the WW selection and (c) after tagging with the ZZ selection. The significance shown in
the inset for each bin is the di↵erence between the data and the fit in units of the uncertainty on this di↵erence.
The significance with respect to the maximum-likelihood expectation is displayed in red, and the significance when
taking the uncertainties on the fit parameters into account is shown in blue. The spectra are compared to the signals
expected for an EGM W 0 with mW0 = 1.5, 2.0, or 2.5 TeV or to an RS graviton with mGRS = 1.5 or 2.0 TeV.
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Same process in CMS
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Other final states from diboson
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Situation of diboson in each channel

final states ATLAS CMS

only jets excess no excess

with leptons no excess no excess
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What we know about the excess
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Works in market (more than 30 papers)
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WW scattering at high energy (longitudinal modes)
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terms which are proportional to E4.
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where

x ≡ m2

E2
, c ≡ cos θ, (2.1.6)

and where cos θ is the scattering angle. As we can see from eqn.(2.1.2)–eqn.(2.1.5), E4

dependence is canceled among the diagrams, and the leading term of the summation
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of eqn.(2.1.2)-(2.1.5) is proportional to E2.
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Here we used following relations,

fabef cde = δacδbd − δadδbc (2.1.8)

m2 =
g2v2

4
. (2.1.9)

The reason for the cancelation of E4 dependence is the gauge symmetry because it
manifests that the coupling of 4-point gauge interaction is square of the coupling of
3-point gauge interaction. Because eqn.(2.1.7) is a monotonically increasing function
of energy, it violates unitarity at some scale if there are no particles contributing to this
amplitude. In the SM, the Higgs boson contributes to this amplitude. The diagrams
are proportional to E4 E−2 = E2, where E−2 comes Higgs boson’s propagators.
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From eqn.(2.1.7) and eqn.(2.1.11)–(2.1.12), we can get

i
m2

h

v2

(
δabδcd + δacδbd + δadδbc

)
+ O(g2E0). (2.1.13)

This is not a monotonically increasing function of energy. Hence perturbative unitarity
can be kept at high energy in the SM.
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Unitarity sum rules with W’
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Sum rules in W, W’, and CP-even Higgses system
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WW → WW and WWW’ coupling
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Sum rules in W, W’, and CP-even Higgses system
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WW’h coupling and WWh coupling
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constraint on parameter space
6

leptonic decay channels[36, 37]. For 2 TeV W ′ boson
search in pp collisions at

√
s = 8 TeV, the limit is

σ(pp → W ′)BW ′(ℓν) <∼ 0.4 fb. (IV.4)

Limits on the Z ′ → e+e−, µ+µ− are reported in Refs.[38,
39]. For MZ′ = 2 TeV, these references give a limit

σ(pp → Z ′)BZ′(ℓ+ℓ−) <∼ 0.2 fb. (IV.5)

The LHC limits on the resonant dijet production can
also be used to constrain W ′ models. Using the limits
presented in Refs.[40, 41], we see

∑

X=W ′,Z′

σ(pp → X)BX(2j) <∼ 100 fb, (IV.6)

for a degenerated MW ′ = MZ′ = 2 TeV model, and

σ(pp → W ′)BW ′(2j) <∼ 100 fb, (IV.7)

for a non-degenerated model with MW ′ = 2 TeV.
Finally, the model needs to satisfy the limit on the

W ′ → Wh and Z ′ → Zh decay modes. Here h stands for
the 125 GeV Higgs particle. The limit quoted in Ref.[4]
is

∑

X=W ′,Z′

σ(pp → X)BX(V h) <∼ 7 fb, (IV.8)

for MW ′ = MZ′ = 2 TeV, and

σ(pp → W ′)BW ′ (Wh) <∼ 7 fb, (IV.9)

for a non-degenerated model with MW ′ = 2 TeV.
Figure 1 shows these limits in the ξf -ξV plane for

MZ′ = MW ′ = 2 TeV. We assume quark-lepton universal
coupling ξf = |ξq| = |ξℓ| in this plot. We also assume the
125 GeV Higgs coupling with WW ′ and ZZ ′ are given
by

ξh = ±ξV , (IV.10)

which corresponds to κV = 1 in the unitarity relation
(III.7). The dijet limit (IV.6) is applied for the resonant
production cross section of five flavor qq̄ pairs. The W ′

and Z ′ particles are produced through their couplings
with quarks in pp collisions at 8 TeV. The production
cross sections are evaluated by using the CTEQ6L1 set
of the parton distribution functions [42].
We see in this plot that the Higgs mode limit (IV.8)

and the leptonic decay mode limit (IV.4) rule out huge
parameter space. It is impossible to obtain the reference
value of the cross section (IV.1) without causing conflicts
with the Higgs mode limit (IV.8) under the Higgs cou-
pling assumption (IV.10). We are only able to achieve
∑

X=W ′,Z′ σ(X)BX(V V ) ≃ 7 fb at most.
A similar plot for a leptophobic ξℓ = 0 model is

shown in Figure 2 assuming the degenerated W ′ and Z ′,
MZ′ = MW ′ = 2 TeV . Again, the 125 GeV Higgs cou-
pling is assumed to satisfy (IV.10). Although the con-
straints from the leptonic decay channels of W ′ and Z ′

FIG. 1: Limits on the W ′ and Z′ couplings in the ξf -ξV
plane for the degenerated MZ′ = MW ′ = 2 TeV model. ξf =
|ξq| = |ξℓ| and ξh = ±ξV are assumed. The darkgreen region,
the lightblue region, and the gray region are excluded by the
dijet mode limit (IV.6), the ℓν mode (IV.4), and Higgs mode
(IV.8), respectively. Although we do not show the limit from
(IV.5) in the plot, it is numerically almost identical to the
W ′ → ℓν limit. The black solid curve, the black dashed curve,
and the black dotted curve are for σ(pp → W ′)BW ′(WZ) +
σ(pp → Z′)BZ′(WW ) = 15 fb, 10 fb, and 5 fb, respectively.
The red solid curve, the red dashed curve, and the red dotted
curve are for ΓW ′ = 80GeV, 50GeV, and 20 GeV, respectively.
The width of Z′ is almost equal to ΓW ′ thanks to the custodial
symmetry.

disappear in the leptophobic model, the limit on the V h
channel gives severe constraint on (IV.2). It is impossible
to obtain the the reference value 10 fb in this setup.
In order to explain the diboson excess without causing

conflicts with the Higgs mode limit (IV.8), we need to
take smaller value of ξh. The unitarity relation (III.7)
suggests us such a value of ξh can be achieved only if
we consider models with a non-SM like Higgs (κV < 1).
Figure 3 shows the plot with ξh/ξV = ±0.7, i.e., κV =
0.7. The quark-lepton universal couplings ξf = |ξq| =
|ξℓ| are assumed in the plot. The reference cross section
value for the excess can be explained at, e.g., ξV ≃ 4 and
ξf ≃ 0.23. Note that the choice of this parameter ξV
satisfies the perturbativity condition (II.11).
We next consider the non-degenerated case, MZ′ >

MW ′ = 2 TeV. The Z ′ boson is assumed to be heavy
enough to be separated from the 2 TeV resonance. The
plot corresponding to this model is shown in Figure 4.
Here ξf = |ξℓ| = |ξq| and ξh/ξV = ±0.7 are assumed. We
find that the reference cross section value for the ATLAS
diboson anomaly can be explained at, e.g., ξV ≃ 4 and
ξf ≃ 0.28.
A plot similar to Figures 1, 2, and 3 is also presented

in Ref. [6] in the context of the techni-ρ interpretation
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three possible ways to obtain the hierarchy MZ′ ,MW ′ =
2 TeV ≫ MZ ,MW in this setup. One option is to take
gW1 ≫ gW0, gY 2 with keeping the VEVs f1 = f2 at the
weak scale. Collider phenomenologies in this option were
studied in detail in Ref. [52–54]. This limit is theoreti-
cally interesting, because it can be regarded as an effec-
tive theory of strongly interacting Higgs sector [55, 56]
motivated by models of hidden local symmetry [57–61].
However, in order to realize 2 TeV MW ′ with this op-

tion, we need non-perturbatively strong gW1. Ref. [6]
studies an interpretation of the ATLAS diboson anomaly
with gW1 ≫ gW0, gY 2, introducing higher order operators
to suppress the effective coupling of the heavy vector res-
onance. We do not pursue this direction in this paper.
Other options are to take f1 ≫ f2 or f1 ≪ f2, keeping

perturbative coupling constants gW0, gW1 and gY 2. In
the subsections below, we will give our results of MW ′ ,
MZ′ , gWWZ′ , gWZW ′ , gWWh and gWW ′h in these limits
and check the unitarity sum rules explicitly in this model.
We will also point out that the reciprocality between ξf
and ξV , suggested by the favored parameter regions of the
ATLAS diboson anomaly fit, ξV ≃ 3 ∼ 5, ξf ≃ 0.2 ∼ 0.3
can be naturally realized in this setup.

A. f1 ≫ f2

We start with the case f1 ≫ f2. In this case the
SU(2)W0 ×SU(2)W1 gauge symmetry is broken into the
diagonal subgroup at the high energy scale f1, while the
weak scale is given by f2. We thus obtain the masses of
W ′ and Z ′ in proportional to f1,

M2
W ′ ≃ M2

Z′ ≃
g2W0 + g2W1

4
f2
1 . (V.13)

The weak SU(2) gauge group at the weak scale should
be the diagonal subgroup of SU(2)W0 × SU(2)W1, while
the weak scale U(1)Y is given by U(1)Y 2. The gauge
coupling strengths at the weak scale are therefore

g2W ≃
g2W0g

2
W1

g2W0 + g2W1

, g2Y ≃ g2Y 2. (V.14)

The masses of the W and Z bosons are given by

M2
W ≃

g2W
4

f2
2 , M2

Z ≃
g2W + g2Y

4
f2
2 . (V.15)

It is easy to check these formulas by an explicit diago-
nalization of the mass matrices of the gauge fields W0,
W1 and B, which are given by the Higgs kinetic term
Lagrangian (V.8). We also obtain

M2
Z′ −M2

W ′ = (M2
Z −M2

W )O(
M2

W

M2
W ′

). (V.16)

The W ′ and Z ′ bosons are therefore highly degenerated
in this setup. We next consider the WZW ′ and WWZ ′

couplings. Explicit calculation of the mass diagonaliza-
tion matrices of neutral and charged gauge bosons leads
to

gWZW ′ =
gW1

gW0
gW

MWMZ

M2
W ′

, (V.17)

and

gWWZ′ =
gW1

gW0
gW

M2
W

M2
Z′

. (V.18)

These results are perfectly consistent with our
parametrization formulas (III.3) and (III.4). Therefore
these couplings satisfy the unitarity and the custodial
symmetry. Comparing (V.17), (V.18) with (III.3) and
(III.4), we find ξV in this model is given by

ξV =
gW1

gW0
. (V.19)

We also obtain R = 1, consistent with the custodial sym-
metry MW ′ = MZ′ .
It is straightforward to calculate the Higgs couplings.

We obtain

gWWh ≃ gWMW sinα, (V.20)

gWW ′h ≃ −
gW1

gW0
gWMW sinα, (V.21)

gZZ′h ≃ −
gW1

gW0
gWMZ sinα. (V.22)

Again, these results are consistent with our custodial
symmetry formulas (III.5) and (III.6) and the result of
the unitarity sum rules (III.7). The parameter ξh and κV

in this model are given by

ξh = −
gW1

gW0
sinα, (V.23)

κV = sinα. (V.24)

We next calculate the W ′ and Z ′ couplings with the
quarks and the leptons. We find that both the quark
hypercharge current and the lepton hypercharge current
couple with the Z ′ boson only with coefficients sup-
pressed by (M2

Z −M2
W )/M2

W ′ . The couplings of W ′ and
Z ′ with the quarks and the leptons are therefore consis-
tent with the ansatz given in Section. III. The parameters
ξq and ξℓ are given by

ξq =
gW0

gW1

(

1− xq − xq
g2W1

g2W0

)

, (V.25)

ξℓ =
gW0

gW1

(

1− xℓ − xℓ
g2W1

g2W0

)

, (V.26)

⇠f =
1

⇠V

�
1� xf (1 + ⇠

2
V )

�

6

leptonic decay channels[36, 37]. For 2 TeV W ′ boson
search in pp collisions at

√
s = 8 TeV, the limit is

σ(pp → W ′)BW ′(ℓν) <∼ 0.4 fb. (IV.4)

Limits on the Z ′ → e+e−, µ+µ− are reported in Refs.[38,
39]. For MZ′ = 2 TeV, these references give a limit

σ(pp → Z ′)BZ′(ℓ+ℓ−) <∼ 0.2 fb. (IV.5)

The LHC limits on the resonant dijet production can
also be used to constrain W ′ models. Using the limits
presented in Refs.[40, 41], we see

∑

X=W ′,Z′

σ(pp → X)BX(2j) <∼ 100 fb, (IV.6)

for a degenerated MW ′ = MZ′ = 2 TeV model, and

σ(pp → W ′)BW ′(2j) <∼ 100 fb, (IV.7)

for a non-degenerated model with MW ′ = 2 TeV.
Finally, the model needs to satisfy the limit on the

W ′ → Wh and Z ′ → Zh decay modes. Here h stands for
the 125 GeV Higgs particle. The limit quoted in Ref.[4]
is

∑

X=W ′,Z′

σ(pp → X)BX(V h) <∼ 7 fb, (IV.8)

for MW ′ = MZ′ = 2 TeV, and

σ(pp → W ′)BW ′ (Wh) <∼ 7 fb, (IV.9)

for a non-degenerated model with MW ′ = 2 TeV.
Figure 1 shows these limits in the ξf -ξV plane for

MZ′ = MW ′ = 2 TeV. We assume quark-lepton universal
coupling ξf = |ξq| = |ξℓ| in this plot. We also assume the
125 GeV Higgs coupling with WW ′ and ZZ ′ are given
by

ξh = ±ξV , (IV.10)

which corresponds to κV = 1 in the unitarity relation
(III.7). The dijet limit (IV.6) is applied for the resonant
production cross section of five flavor qq̄ pairs. The W ′

and Z ′ particles are produced through their couplings
with quarks in pp collisions at 8 TeV. The production
cross sections are evaluated by using the CTEQ6L1 set
of the parton distribution functions [42].
We see in this plot that the Higgs mode limit (IV.8)

and the leptonic decay mode limit (IV.4) rule out huge
parameter space. It is impossible to obtain the reference
value of the cross section (IV.1) without causing conflicts
with the Higgs mode limit (IV.8) under the Higgs cou-
pling assumption (IV.10). We are only able to achieve
∑

X=W ′,Z′ σ(X)BX(V V ) ≃ 7 fb at most.
A similar plot for a leptophobic ξℓ = 0 model is

shown in Figure 2 assuming the degenerated W ′ and Z ′,
MZ′ = MW ′ = 2 TeV . Again, the 125 GeV Higgs cou-
pling is assumed to satisfy (IV.10). Although the con-
straints from the leptonic decay channels of W ′ and Z ′

FIG. 1: Limits on the W ′ and Z′ couplings in the ξf -ξV
plane for the degenerated MZ′ = MW ′ = 2 TeV model. ξf =
|ξq| = |ξℓ| and ξh = ±ξV are assumed. The darkgreen region,
the lightblue region, and the gray region are excluded by the
dijet mode limit (IV.6), the ℓν mode (IV.4), and Higgs mode
(IV.8), respectively. Although we do not show the limit from
(IV.5) in the plot, it is numerically almost identical to the
W ′ → ℓν limit. The black solid curve, the black dashed curve,
and the black dotted curve are for σ(pp → W ′)BW ′(WZ) +
σ(pp → Z′)BZ′(WW ) = 15 fb, 10 fb, and 5 fb, respectively.
The red solid curve, the red dashed curve, and the red dotted
curve are for ΓW ′ = 80GeV, 50GeV, and 20 GeV, respectively.
The width of Z′ is almost equal to ΓW ′ thanks to the custodial
symmetry.

disappear in the leptophobic model, the limit on the V h
channel gives severe constraint on (IV.2). It is impossible
to obtain the the reference value 10 fb in this setup.
In order to explain the diboson excess without causing

conflicts with the Higgs mode limit (IV.8), we need to
take smaller value of ξh. The unitarity relation (III.7)
suggests us such a value of ξh can be achieved only if
we consider models with a non-SM like Higgs (κV < 1).
Figure 3 shows the plot with ξh/ξV = ±0.7, i.e., κV =
0.7. The quark-lepton universal couplings ξf = |ξq| =
|ξℓ| are assumed in the plot. The reference cross section
value for the excess can be explained at, e.g., ξV ≃ 4 and
ξf ≃ 0.23. Note that the choice of this parameter ξV
satisfies the perturbativity condition (II.11).
We next consider the non-degenerated case, MZ′ >

MW ′ = 2 TeV. The Z ′ boson is assumed to be heavy
enough to be separated from the 2 TeV resonance. The
plot corresponding to this model is shown in Figure 4.
Here ξf = |ξℓ| = |ξq| and ξh/ξV = ±0.7 are assumed. We
find that the reference cross section value for the ATLAS
diboson anomaly can be explained at, e.g., ξV ≃ 4 and
ξf ≃ 0.28.
A plot similar to Figures 1, 2, and 3 is also presented

in Ref. [6] in the context of the techni-ρ interpretation
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Figure 1. The moose diagram of this set up: the circles represent the gauge groups, and the
thick lines that connect two circles are the Higgs fields. The Higgs fields H1, H2, and SU(2)1
gauge group can be regarded as the operators originated from the dynamical sector.

Here, we assume that SU(2)1 gauge symmetry is belong to dynamical sector, and g1 �
g0, g2. Under this assumption, g0 and g2 are approximately gW and gY which are the
gauge couplings of SU(2)L⇥U(1)Y . We regard the gauge field associated with SU(2)1 as
the vector resonance originated from unknown dynamics above TeV scale. This implies
that SU(2)1 doublets are also belong to the dynamical sector. We takeH1 andH2 as such
fields, and regard H3 as elementary fields. All the fermions are also elementary fields,
and thus they are singlet under SU(2)1. We schematically show this model structure
in the moose notation [26] in Fig. 1, and also summarize the field contents and their
charge assignments in Table 1.

The scalar potential is given as#1

V (H1, H2, H3) = µ2
1tr(H1H

†
1) + µ2

2tr(H2H
†
2) + µ2

3tr(H3H
†
3)

+tr(H1H2H
†
3)

+�1(tr(H1H
†
1))

2 + �2(tr(H2H
†
2))

2 + �3(tr(H3H
†
3))

2

+�12tr(H1H
†
1)tr(H2H

†
2) + �23tr(H2H

†
2)tr(H3H

†
3)

+�31tr(H3H
†
3)tr(H3H

†
3). (2)

Here all the Higgs fields are represented by two-by-two matrix, and they are real, namely

✏H⇤
i ✏ = �Hi, where ✏ =

✓
0 1
�1 0

◆
. (3)

All parameters in the Higgs potential are also real. We assume that all the vacuum
expectation values (VEVs) of the Higgs fields are diagonal, real and positive to realize

#1We can add one more term, i0tr(H1H2H
†
3⌧

3), to the Higgs potential, but this term can be elimi-
nated by the field redefinition [21], so that we omit the term in this paper.
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It is convenient to use a di↵erent set of the parameters instead of these parameters. We
use the following 13 parameters to fix the parameters in the electroweak sector,

r, v3, v, ↵, mZ , mZ0 , mh, mH0 , mH , mA, F , Z , gWW 0H0 . (34)

Here, we use r, v3, v instead of three µ parameters.  is fixed by the charged Higgs mass
or the CP-odd Higgs mass. The six �’s have the same information as three CP-even
Higgs masses and their mixing angles (mh, mH , mH0 , ✓1, ✓2, ✓3). We can use mZ , mZ0 ,
and ↵(= e2/4⇡) instead of the gauge couplings. In addition, we can exchange (✓1, ✓2,
✓3) with (F , Z , gWW 0H0). Since the values of four parameters, v, mZ , ↵, and mh are
already known, the remaining nine parameters are free parameters of this model. In our
analyses, we take mh = 125 GeV.

We find F is severely constrained close to 1 in mA � mh regime. When the heavy
Higgs masses are universal, mA = mH0 = mH , the expression of a quartic coupling �3

by our parameter choice (Eq. (34)) becomes very simple,

�3(µ = mZ0) =
2
F

2

m2
h

v2
+

1� 2
F

2

m2
A

v2
. (35)

Theoretical conditions (see subsection 3.2 for more detail) demand 0 < �3 < 4⇡, namely
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and
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2TeV

mA

◆2
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Here we assumed mA � mh to obtain the last expressions.
Similarly, we find that the coupling ratio Z is also severely constrained close to its

maximized value in mA � mh regime. Typically, the allowed regime is Z = 1�O(1)%.
The detailed description is given in Appendix A.

In the following discussion, we take F ' 1, mA = mH = mH0 = O(1) TeV,
gWW 0H0 = 0, and we always choose Z to be its maximal value. For the most part of
our numerical analysis, Z is set to 0.95 - 1.00.

3 Phenomenology of Spin-1 Resonances

In this section, we discuss the properties of the W 0 and Z 0 such as production cross sec-
tion and decay branching ratios, and also discuss both the theoretical and experimental
constraints. In the following, we show some formulae with approximation, which help
to understand the parameter dependence. However, we use the exact formulae in our
numerical calculations.
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Figure 3. The total widths and the branching ratios of the extra vector bosons, W 0 and Z 0. We
take v3 = 200GeV, r = 0.13, F = 1.00, and mA = mH0 = mH = 2 TeV. Here, 2jets means
Br(W 0 ! ud)+Br(W 0 ! sc) or Br(Z 0 ! uu)+Br(Z 0 ! dd)+Br(Z 0 ! ss)+Br(Z 0 ! cc),
`⌫ means Br(W 0 ! e⌫e) ( =Br(W 0 ! µ⌫µ) =Br(W 0 ! ⌧⌫⌧ )), `` means Br(Z 0 ! ee) (
=Br(Z 0 ! µµ) =Br(Z 0 ! ⌧⌧)), ⌫⌫ means Br(Z 0 ! ⌫e⌫e)+Br(Z 0 ! ⌫µ⌫µ)+Br(Z 0 ! ⌫⌧⌫⌧ ),
and W±H⌥ means Br(W 0 ! W+H�) =Br(W 0 ! W�H+).
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Figure 8. The cross sections of W 0 and Z 0 with two gauge bosons in their final states. We
take mZ0 = 1.9 TeV (left panel), 2.0 TeV (middle panel), and 2.1 TeV (right panel). The color
filled regions are excluded or constrained. The blue regions are excluded by the experimental
bounds. The regions of g1(µ = mZ0) > 4⇡ are represented by yellow. The cyan regions
are excluded by the bounded below condition. The green regions are constrained from the
perturbativity and stability conditions where their cut o↵ scale is 100 (10) TeV in the lighter
green (darker green) region. Below the thick orange lines, the cross section �(pp ! V 0 ! V V )
is enough to explain the diboson excess at ATLAS. After taking account of the K-factor, the
boundaries of the regions change to the dashed orange lines, and the regions below the dashed
blue lines are excluded by the LHC bounds.

Below the thick orange line the cross section �(pp ! V 0 ! V V ) is enough to
explain the total number of the diboson excess events at ATLAS. Here we apply the
event selection e�ciencies for extended gauge model (cf. 10 - 16 % at mJJ = 2 TeV
) [1]. We find that these regions are still allowed from the experimental and theoretical
constraints. Note that a part of these regions are constrained from the stability condition
at ⇤̄ = 100 TeV filled with light green. However, once we take into account the higher
order correction, these constraint would be weaker as we discussed in Sec. 3.2.1. In the
parameter regions shown in the figure, �(pp ! W 0 ! WZ)/�(pp ! Z 0 ! WW ) ' 2.
This is because the custodial symmetry is enhanced for small r regime.

In the figure we show the leading order (LO) production cross sections. Next-to-
leading order and next-to-leading logarithmic (NLO+NLL) corrections to the production
of W 0 and Z 0 are evaluated in Ref [45, 46], and K-factor (�/�LO) is about 1.3. This
means that once we consider the QCD correction, the production cross sections in the
figures should be scaled by about 30 %, and the LHC bounds become severer, while
the theoretical constraints do not change. After taking account of the K-factor, the
LHC diboson excess can be explained for the regions below dashed orange lines, and the
regions below the dashed blue lines are excluded by the LHC bounds.

Figure 9 shows �(pp ! W 0 ! Wh). The parameter choices and the color notations
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Figure 14. mjj distributions for background (left panel) and signal (right panel) at
p

s = 13
TeV. The background distribution is for 10 fb�1 and signal distributions are normalized to be
1 for various input W 0 mass.
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Figure 15. Expected limit on �(pp ! W 0 ! WZ) at
p

s = 13 TeV. We take �tot(W 0) =
25 GeV.
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