Antineutrino Results from T2K

Roger Wendell (ICRR) 20150527 For the T2K Collaboration

Menu

Introduce the T2K experiment and some recent results

- Muon Antineutrino Disappearance analysis (New!)
- Future Prospects

The T2K (Tokai-to-Kamioka) experiment

Phenomenology Oscillations

For a fixed baseline, L, energy, E, and a v_{μ} source

$$V_{e} \text{ appearance} P(\nu_{\mu} \rightarrow \nu_{e}) = 4C_{13}^{2}S_{13}^{2}S_{23}^{2}\sin^{2}\Phi_{31}\left(1 + \frac{2a}{\Delta m_{31}^{2}}(1 - 2S_{13}^{2})\right) \rightarrow \text{Leading, matter effect} + 8C_{13}^{2}S_{12}S_{13}S_{23}(C_{12}C_{23}\cos\delta - S_{12}S_{13}S_{23})\cos\Phi_{32}\sin\Phi_{31}\sin\Phi_{21} \rightarrow \text{CP conserving} - 8C_{13}^{2}C_{12}C_{23}S_{12}S_{13}S_{23}\sin\delta\sin\Phi_{32}\sin_{31}\sin\Phi_{21} \rightarrow \text{CP violating} + 4S_{12}^{2}C_{13}^{2}(C_{12}^{2}C_{23}^{2} + S_{12}^{2}S_{23}^{2}S_{13}^{2} - 2C_{12}C_{23}S_{12}S_{23}S_{13}\cos\delta)\sin^{2}\Phi_{21} \rightarrow \text{Solar} - 8C_{13}^{2}S_{13}^{2}S_{23}^{2}(1 - 2S_{13}^{2})\frac{aL}{4E}\cos\Phi_{32}\sin\Phi_{31} \rightarrow \text{Matter effect}$$

Probability is coupled to <u>all</u> oscillation parameters

- Atmospheric mixing parameters must also be well known!
- Possible to study CP violation in neutrinos!

$$\Delta = \frac{\Delta m_{31}^2 L}{4E}$$

$$P(v_{\mu} \rightarrow v_{\mu}) \approx 1 - (\cos^4 \theta_{13} \sin^2 2\theta_{23} + \sin^2 2\theta_{13} \sin^2 \theta_{23}) \sin^2 \Delta$$

T2K can observe both phenomena: Oscillation Maximum ~ 600 MeV

Location and depth of oscillation "dip" determine $P(\nu_\mu\!\rightarrow\nu_\mu)$ $\sin^2 2\theta_{23} = 1.0$ mixing parameters, Δm^2_{23} and 05 $\sin^2 2\theta_{13}^2 = 0.1$ $\Delta m_{32}^2 = 2.4 \times 10^{-3} \,\text{eV}^2$ $\sin^2\theta_{23}$ 0.1 P(v ↓ 0.02 - NH, $\delta_{CP} = 0$ - IH, $\delta_{CP} = 0$ - NH, $\delta_{CP} = \pi/2$ - IH, $\delta_{CP} = \pi/2$ Events/0.10 GeV - Data 60 MC Unoscillated Spectrum 40 MC Best Fit Spectrum NC MC Prediction 20 **₩₩₩** OA 0.0° $\Phi_{v_{\mu}}^{295km}$ (A.U.) **Here of the other of the other of the other of the other other of the other o** > 5 ₩ OA 2.5° Reconstructed v Energy (GeV) Туре **Event Rate MC** Expectation 124.98 Observation 120 MC without Osc. 445.98 2 E_v (GeV)

Neutrino Oscillations : Neutrino Mode Disappearance

Neutrino Oscillations : Neutrino Mode Appearance

T2K Results: Run 1-4 (2014)

Disappearance

- T2K currently has the most precise measurement of the neutrino disappearance parameters
- **7.3** σ observation of $v_{\mu} \rightarrow v_{e}$ appearance
- Combination with reactor neutrino measurements has provided first constraints on δ_{cp}

	90% CL Inclusion	
NH	$δ_{CP} \in [-1.18, 0.15]π$	
IH	$δ_{CP} \in [-0.91, -0.08]π$	

T2K Future: The Case for Antineutrino Measurements

No constraint on CP-violating parameter, δ_{cp} , using only neutrino or antineutrino mode data

T2K Future: The Case for Antineutrino Measurements

- However, T2K can make a 90% C.L. measurement of this parameter and even CP violation itself under fortunate scenarios
- Further, measurements of this sort at T2K are a baseline for future measurements envisioned by the high-statistics experiment, Hyper-K

T2K Present: The Case for Antineutrino Disappearance

- Study the behavior of neutrino and antineutrino oscillations
 - Test of the CPT theorem
 - Probe of exotic oscillation models
- The antineutrino appearance probability is a strong function of the oscillation parameters disappearance experiments measure
 - Important input for future appearance studies

The Basic Idea of the Experiment

T2K uses a 44 mrad off-axis beam to achieve a sharp v energy profile peaked at 600 MeV (~oscillation maximum)

T2K Summary

- Beamline, Target, and Horns (L=0)
- **On-axis** near detector (L=280m)
- **Off-axis** near detector (L=280m)
- **Far** detector (L=295km)

- : Create neutrino beam
- : Measure beam direction precisely
- : Measure unoscillated flux
- : Measure oscillated flux

J-PARC Neutrino Facility in Tokai-mura

- Neutrino Mode: 7.0×10^{20}
- Antineutrino Mode: 3.3 × 10²⁰

Antineutrino Mode: 3.3 × 10²⁰

$$\begin{split} \mathrm{K}^{+} &\to \mu^{+} \, \nu_{\mu} \\ \mathrm{K}^{+} &\to \pi^{0} \, \mu^{+} \, \nu_{\mu} \\ \mathrm{K}^{+} &\to \pi^{0} \, \mathrm{e}^{+} \nu_{e} \end{split}$$

Muon monitor

- **Beam Axis**
- 31 GeV/c protons from JPARC accelerator strike 91 cm long graphite target, neutrinos are produced from decays of emerging pions
- Resulting beam is almost entirely v
 - Intrinsic contamination of v_{e} from muon decays, a

background for appearance search

- Protons and other hadrons that have not decayed are stopped in a beam dump if p < 5 GeV/c</p>
- Higher energy muons are observed by a downstream muon monitor
 ¹⁶

 $\pi^{-} \rightarrow \mu^{-}$

 $K^{-} \rightarrow \mu^{-} \nu_{\mu}$ $K^{-} \rightarrow \pi^{0} \mu^{-} \overline{\nu}_{\mu}$ $K^{-} \rightarrow \pi^{0} e^{-} \overline{\nu}_{\mu}$

Muon monitor

- **Beam Axis**
- 31 GeV/c protons from JPARC accelerator strike 91 cm long graphite target, neutrinos are produced from decays of emerging pions
- Resulting beam is almost entirely $\overline{\mathbf{v}}$
 - Intrinsic contamination of $\overline{\mathbf{v}}_{\mathbf{e}}$ from muon decays, a

background for appearance search

- Protons and other hadrons that have not decayed are stopped in a beam dump if p < 5 GeV/c</p>
- Higher energy muons are observed by a downstream muon monitor
 ¹⁷

Beam Composition

Wrong sign component of antineutrino mode flux is larger than that of the neutrino mode flux

Muonic neutrinos comprise the majority of the flux

On-Axis Near Detector, INGRID (L=280m)

axis

Select events with long tracks in each module, fit for the beam rate and position

Beam Stability With INGRID

POT normalized event rate stable to less than 1%
 Beam direction is stable to within 1mrad
 1 mrad shift → **2%** shift in v peak energy

Roger Wendell

Situated 2.5° (44mrad) off-axis, same as far detector

- Several sub-detectors, target nuclei (v cross section measurements, etc.)
- "Tracker" used in this analysis
- Two Fine Grained Detectors (FGDs)
 - Scintillator Trips, 1.6t neutrino target (C), Precise vertex information
- Three Time Projection Chambers (TPCs)
 - Gas Ionization, Momentum by curvature, PID by dE/dx

Far Detector Super-Kamiokande (L=295 km)

- 50 kton water cherenkov detector
 - 22.5 kton fiducial volume
 - Charged particles produce "cherenkov rings"
 - No net magnetic fields
- Inner detector : 11,146 50cm PMTs
- Outer detector (veto) : 1,885 20cm PMTs
- Excellent particle identification (efficient separation of μ and e)
 - 0.6% MIS-ID below 1 GeV
 - **1,632** days of atmospheric neutrino data control samples
 - T2K trigger records all PMT hits within \pm 500 μ s of the beam arrival time

Analysis Methodology

Oscillation Analysis Strategy

Neutrino Flux

MC simulation of beamline target tuned with beamline monitors and external data

Neutrino Interactions

Interaction model (NEUT) tuned and constrained using external data

- The flux at the near and the far detectors are correlated (same v source)
- Some cross section parameters are correlated as well
- Axial Masses, cross-section normalizations etc.
- Not all though, primary targets differ: O vs. C
- Through these correlations, measurements at the near detector can reduce systematic errors at the far detector

Neutrino Interaction Tuning

- Neutrino interaction model tuned using fits to external data sets, MiniBooNE and MINERVA CCQE-like data
- Data sets are not completely compatible, systematic errors have been inflated to cover the discrepancies
- Final state interactions and secondary interaction cross sections are tuned using pion-nucleus scattering data

New to the Model: Multinucleon Interactions

- T2K assumes CCQE interactions to reconstruct the parent neutrino energy
- Recently several theories predict multinucleon interactions are a sizeable fraction of the total cross section below a few GeV
- Interactions off a correlated pair of nucleons leave less energy is the outgoing lepton
 - Systematic bias towards lower reconstructed energies

Flux Systematics

- Hadron production model tuned using NA61 data on a thin carbon target
- Overall flux uncertainty is between 10% - 15%

<u>Neutrino Flux</u> MC simulation of beamline target tuned with beamline monitors ad external data

Material Modeling

Proton Number

13av1 Error

Hadronic Uncertainties

Fit To the Near Detector Tracker Neutrino Data

Goal : Constrain flux at SK by fitting ND data

- Fit analysis samples in p_{u} , θ_{u}
- Seven samples used in the fit
 - Focus on measured final states
 - CC-0 π , CC-1 π +, and CC-Other (neutrino mode)
 - 4 antineutrino mode (next slide)
- Neutrino mode data has high statistics constraint for flux and cross section model

Interaction	CC-0π	CC-1 π^+	CC Other
CCQE	63.5%	5.3%	3.9%
Resonant π	20.2%	39.5%	14.3%
DIS	7.5%	31.3%	67.8%
Coherent π	1.4%	10.6%	1.4%
Other	7.4%	13.3%	12.6%

Fit To the Near Detector Tracker Antineutrino Data

$\overline{\nu}_{\mu}\,CC\text{-}1Track$

$\overline{\nu}_{\mu}$ CC-NTrack

Fit To the Near Detector Tracker Antineutrino Data

Interaction	CC-0 π	CC-N π	BKG	External
CC-1 Track	73.4%	15.8%	5.5%	5.3%
CC-N Track	8.8%	46.8%	36.7%	7.5%
CC-1 Track W.S.	50.6%	27.8%	9.3%	12.3%
CC-N Track W.S.	15.2%	66.3%	12.3%	6.2%

Antineutrino data is statistically limited: Using 4.3×10^{19} POT

Fit To the Near Detector Data Data Data Events/(100 MeV/c) MC, Prior to ND280 Constraint 500 MC, Prior to ND280 Constraint MC, After ND280 Constraint MC, After ND280 Constraint 400 PRELIMINARY PRELIMINARY 300 CC $1\pi^+$ CC 0π 1000 200 500 100 0^{L}_{0} 1000 1500 2000 2500 3000 3500 4000 4500 5000 500 500 1000 1500 Muon momentum (MeV/c) Data Data Events/(100 MeV/c) 12 70 F MC, Prior to ND280 Constraint 10 60 I MC, After ND280 Constraint 50E

40E

30E

20 E

10

0

500

1000

1500

Fit To the Near Detector Data

- Improved Data/MC agreement after the fit
- Multinucleon component increased

Constraints on the underlying cross section parameters and reduced

errors:

T2K Preliminary

Cross-section Model Parameter	Prior to ND280 Constraint	After ND280 Constraint
M_A^{QE} (GeV/ c^2)	1.150 ± 0.070	1.137 ± 0.034
CC 2p-2h ¹² C	0.27 ± 0.29	1.03 ± 0.17
CC 2p-2h ¹⁶ O	0.27 ± 1.04	1.03 ± 1.01
p _F ¹² C (MeV/ <i>c</i>)	223.0 ± 12.3	222.7 ± 8.8
E _B ¹² C (MeV)	25.0 ± 9.0	23.9 ± 7.3
C ^A ₅ (0)	1.01 ± 0.12	0.862 ± 0.074
M_A^{RES} (GeV/ c^2)	0.95 ± 0.15	0.724 ± 0.052
I=1/2 Background	1.3 ± 0.2	1.49 ± 0.19
CC Coherent ¹² C	1.0 ± 1.0	0.02 ± 0.16
CC Other Shape	0.0 ± 0.4	0.02 ± 0.19

Fit To the Near Detector Tracker Data: Results

Flux parameters fit higher than the default model in general

- true for both neutrino and antineutrino mode
- Uncertainty on flux parameters is reduced after the fit

Fit To the Near Detector Tracker Data: Results

Final SK Prediction

- ND280 fit introduces further correlations and anticorrelations between the flux and cross section models
- This correlation matrix is propagated in the oscillation analysis to introduce the constraint from ND280 on the SK data

Super-K Event Selection

Super-Kamiokande Event Selection

- Strategy : Select interactions consistent with a single out-going lepton
- Enables reconstruction of the neutrino energy assuming CCQE interactions

Neutrino energy reconstruction

$$E_{\nu}^{\text{rec}} = \frac{(M_n - V_{nuc}) \cdot E_e - m_e^2/2 + M_n \cdot V_{nuc} - V_{nuc}^2/2 + \left(M_p^2 - M_n^2\right)/2}{M_n - V_{nuc} - E_e + P_e \cos\theta_{\text{beam}}}$$

- At T2K energies the outgoing nucleon is often unseen at Super-K
- CC neutrino interactions produce neutrons
- CC antineutrino interactions produce protons below Cherenkov threshold

Primary Event selection

- Select interactions consistent with the accelerator timing
- 8 bunch structure of the beam is clearly visible at SK
- Select interactions in the 22.5 kton fiducial volume defined as the region offset from the ID wall be 200 cm
- Select Single Ring interactions

Muon-like Sample Definitions

PID selection to reduce contamination from NC and ve interactions

Select events with a reconstructed lepton momentum greater than 200 MeV

0.6

Muon-like Sample Definitions

CC ve

19.9 events with oscillations

Muon-like Sample Vertex Distribution

- After these selections 17 candidates remain
 Vertex distribution appears uniform
- Run 5 in fiducial volume
- Run 6 in fiducial volume
- Run 6 out of fiducial volume

Antineutrino Mode Disappearance Sample Candidates

Two events passing the event selection for the analysis sample

Super-K Detector Systematics

- Evaluated using SK atmospheric neutrino data binned in visible energy
- 12 analysis samples containing e-like, µlike, and NC-like interactions used to study uncertainty in selection efficiency
- Data are fit to MC allowing event migration between the various samples
- Construct correlated errors for propagation to the oscillation analysis

Systematic Error on the SK Event Rate

Systematic		Without ND		With N	ID measurement
	Common to ND280/SK	9.2%	_		3.4%
Flux and Cross Section	SK only	10%			
	All	13.0%	_		10.0%
Final State Interaction/Secondary Interaction			2.1	%	
SK Detector			3.8	3%	
Total		14.4%	_		11.6%

Key Point Summary

- Off-axis beam peaked at ~600 MeV
 - Stable operation in both neutrino and antineutrino mode
 - Beam direction stable throughout
- Flux and interaction model constrained using measurements at the T2K near detector, ND280
- Precise understanding of the expected distribution at at Super-K
- Model constraints are propagated to Super-K for analysis
- Robust event selection at Super-K
 - Systematics understood using atmospheric and cosmic ray muon control samples

Oscillation Analysis

Vary these as part of the likelihood maximization

and PDG2014

$\sin^2\theta_{23}$	0.527	$sin^2\overline{\theta}_{23}$	0-1
Δm^2_{32}	$2.51 \times 10^{-3} eV^2$	$\Delta \overline{m}^2_{32}$	0-0.02 eV ²
$\sin^2 \theta_{13}$	0.0248	$sin^2\overline{\theta}_{13}$	0.0248
$\sin^2 \theta_{12}$	0.304	$sin^2\overline{\theta}_{12}$	0.304
Δm^2_{21}	$7.53 \times 10^{-5} eV^2$	$\Delta \overline{m}^2_{21}$	$7.53 \times 10^{-5} eV^2$
δ	-1.55 rad	δ	-1.55 rad

Disappearance Analysis

Analysis	Method	Systematics	ND Constraint	Shape Term
MaCH3	MCMC	Marginalize	Fit	E ^{rec}
Valor	MINUIT	Minimize	Cov. Matrix	E ^{rec}
р-ө	MINUIT	Marginalize	Cov. Matrix	($p_{\mu}^{}, \theta_{\mu}^{}$)

momentum (MeV/c)

Three separate oscillation analyses with different techniques
 All maximize a likelihood function against the data incorporating correlated systematic uncertainties

Super-K muon-like data (antineutino mode)

Muon Antineutrino Disappearance Contours

- Tight constraints on the antineutrino mixing parameters
 - Normal hierarchy assumed
- Data result is slightly more constraining than expected sensitivity

Cross Analysis Comparison

Very good agreement among the three different analyses

Results from fit to the normal mass hierarchy

Impact of Systematic Errors

- No change is best fit point and only minimal change to the allowed region
- Analysis is heavily dominated by statistical uncertainty
 - Systematic uncertainties have little impact

Comparison with Neutrino Mode Result

- Neutrino mode data shows a tighter contour than the antineutrino mode data
- Large POT in the former and larger cross section for neutrinos

Comparison with MINOS Antineutrino Mode Result

- T2K's accumulated POT is less than MINOS's but the measured contour is smaller
 - 2.3×10^{20} vs. 3.3×10^{20}
 - Nice demonstration of the off-axis oscillation technique

Hierarchy Comparison

Changing the assumed mass hierarchy similarly has no large effect on the analysis result

Summary

First measurement of muon antineutrino disappearance using the off-axis beam technique has been performed using an off-axis beam

preliminary

(MCMC Analysis)

$ \Delta \bar{m}_{32}^2 $	$\sin^2(ar{ heta}_{23})$
$2.33^{+0.27}_{-0.23} \times 10^{-3} \text{ eV}^2$	$0.515\substack{+0.085\\-0.095}$

Currently has world-leading measurement of the antineutrino mixing angle $\sin^2\theta_{_{23}}$

- So far T2K has accumulated only 13% of its total allocated POT
 - More physics to come!
- Antineutrino mode data is still being accumulated
 - Expect 4.5×10^{20} POT by summer, about twice the current statistics)
- Search for $\overline{v}_{u} \rightarrow \overline{v}_{e}$ appearance now underway
 - Aiming for a first result this summer stay tuned!

Please continue to enjoy oscillation measurements from T2K!