Recent results from T2K

Yoshinari Hayato for the T2K collaboration Introduction

Parameters

Neutrino oscillation ~ discovered in 1998 & extensively studied. Flavor mixing & non-zero neutrino mass

~ Beyond the standard model ~

• 3 oscillation angles $(\theta_{12}, \theta_{23}, \theta_{13})$ • 2 mass differences (Δm_{12}^2 , Δm_{32}^2) • 1 CP phase (δ) PMNS Matrix $(U_{\alpha i})$ $|v_{\alpha}\rangle = \Sigma U_{\alpha i} |v_{i}\rangle$ Weak Mass eigenstates $s_{ii} = \sin \theta_{ii}, c_{ij} = \cos \theta_{ij}$ $U \doteq \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\frac{\alpha_{21}}{2}} & 0 \\ 0 & 0 & e^{i\frac{\alpha_{31}}{2}} \end{pmatrix}$ Atmospheric Reactor Solar & Accelerator & Accelerator & Reactor

Neutrino oscillation parameter measurements

Neutrino mixing parameter measurements

Remaining issues

- 1) θ_{23} is really 45° or < 45° or >45° ?
 - Current uncertainty of $\sin^2\theta_{23}$ is still large
- 2) CP is violated or not (δ = 0 or not) ?
- 3) Mass hierarchy ~ which is heavier ? ($\Delta m_{32}^2 > 0$ or < 0 ?)

Tokai to Kamioka long baseline

neutrino oscillation experiment (T2K)

*				
Canada	Italy	Poland	Spain	
TRIUMF	INFN, U. Bari	IFJ PAN, Cracow	IFAE, Barcelona	U. Sheffield
U. Alberta	INFN, U. Napoli	NCBJ, Warsaw	IFIC, Valencia	U. Warwick
U.B. Columbia	INFN, U. Padova	U. Silesia, Katowice		
U. Regina	INFN, U. Roma	U. Warsaw	Switzerland	USA
U. Toronto		Warsaw U. T.	ETH Zurich	Boston U.
U. Victoria	Japan	Wroklaw U.	U. Bern	Colorado S. U.
U. Winnipeg	ICRR Kamioka		U. Geneva	Duke U.
York U.	ICRR RCCN			Louisiana S. U.
	Kavli IPMU	Russia	United Kingdom	Stony Brook U.
France	KEK	INR	Imperial C. London	U. C. Irvine
CEA Saclay	Kobe U.		Lancaster U.	U. Colorado
IPN Lyon	Kyoto U.		Oxford U.	U. Pittsburgh
LLR E. Poly.	Miyagi U. Edu.		Queen Mary U. L.	U. Rochester
LPNHE Paris	Osaka City U.		STFC/Daresbury	U. Washington
	Okayama U.		STFC/RAL	
Germany	Tokyo Metropolitan U	[,] ∼500 members,	U. Liverpool	
Aachen U.	U. Tokyo	59 Institutes,		
		11 countries		

Tokai to Kamioka long baseline neutrino oscillation experiment (T2K)

- Search for the v_e appearance \rightarrow measure θ_{13}
- Precision measurements of oscillation parameters

with v_{μ} disappearance $\rightarrow \delta(\Delta m_{23}^2) \approx 1 \times 10^{-4} \text{ eV}^2$, $\delta(\sin^2 2\theta_{23}) \approx 0.01$ \cdot Study CP violation in the lepton sector (& mass hierarchy)

Neutrino mixing parameter measurements in T2K

 ν_{μ} disappearance channel

~ precise measurement of $\theta^{}_{23}$ & $\Delta m^2^{}_{32}$ / $\Delta m^2^{}_{13}$

Expected sensitivity

 $\delta(\Delta m^2_{23})$ ~ 1 x 10^{-4} eV^2 , $\delta(\sin^2 2\theta_{23})$ ~ 0.01

To achieve this precision,

high statistics & small systematic errors are required.

 v_{μ} Survival probability

$$P(\nu_{\mu} \rightarrow \nu_{\mu}) \simeq 1 - (\cos^4 \theta_{13} \sin^2 2\theta_{23} + \sin^2 2\theta_{13} \sin^2 \theta_{23}) \sin^2 \Delta$$

 $\Delta = \Delta m^2_{32} L/~4E$ (Normal hierarchy) $\Delta m^2_{13} L/~4E$ (Inverted hierarchy)

Oscillation maximum ~ 600 MeV @ 295km

Neutrino mixing parameter measurements in T2K

Neutrino mixing parameter measurements in T2K

 v_e appearance channel

~ Study of CP violation in lepton sector

Two methods

Compare difference between v and v oscillations

T2K is planning to run with anti-neutrino configuration (flip horn current). Anti neutrino "test run" is planned in 2014.

T2K ~ Schematic diagram of the experiment

- Proton beam extracted every ~ 2.5 sec.
- Beam spill width ~ 5 μs
 Beam spill width ~ 6 μs

8 bunches (6 bunches before Summer 2010)

Neutrino production target

graphite target

(diameter = 26mm, L=90cm)

He air cooled

• π focusing ~ Triple horn system operated @ 250kA

except for short period in Run 3 (205kA , 0.21×10^{20} pot)

Increased beam power

~ achieved by increasing the # of protons per pulse & repetition rate

Beam power has been continuously increased by

- 1) # of protons per spill was increased and
- 2) beam repetition rate has been shortened.

Run1(3.52s), Run2(3.2~3.04s), Run3(2.56s), Run4(2.48s)

Delivered # of protons 6.63 x 10²⁰ protons on target Analyzed # of protons6.57 x 10²⁰ protons on target ~ 8% of T2K goal

T2K ~ Schematic diagram of the experiment

T2K ~ Beam stability ~ monitored by muon monitor Stability of beam direction is less than 1mrad throughout whole run period

T2K ~ Beam stability ~ monitored by INGRID

Monitor the number of interactions in the detector

- Observed neutrino interaction rate per P.O.T. has been stable within 0.7%
- Neutrino beam direction is stable within 1mrad

Neutrino beam has been confirmed to be stable.

T2K ~ Schematic diagram of the experiment

T2K far detector ~ Super-Kamiokande

Water Cherenkov detector with fiducial volume 22.5kton Inner detector (ID) 11,129 20inch PMT Outer detector (OD) 1,885 8inch PMT

- New DAQ system from 2008
 - Realtime recording of all PMT hits within $\pm 500 \mu$ sec of each ν beam arrival time at SK by with GPS.

T2K experiment ~ Analysis strategy

Extracting the "oscillation parameters" from observables ~ compare the data and the prediction with oscillations.

Prediction

Based on Monte-Carlo simulation with various constraints from the measurements

T2K neutrino beam ~ flux prediction

- Simulated with FLUKA 2008.3d + GEANT3 w/GCALOR
- Apply weights to the flux

~ Constraint from the external hadron production data sets CERN NA61/SHINE (Primarily used)

> 90 % coverage of v parent pions,

~ 60 % coverage of v paraent kaons

Other data sets are used for outside of the NA61 coverage

+ systematic error evaluations

T. Eichten et al. (Nucl. Phys. B44 1972)

J.V. Allaby et al. (Tech. Rep. 70-12 CERN, 1970) etc..

T2K neutrino beam ~ flux prediction

Beam flux predicted based on

NA61/SHINE π and K production measurements and T2K proton beam measurements

~ 95 % of v_{μ} at ND280 and SK are produced from π^{*}

T2K neutrino beam ~ Uncertainty of the flux prediction

Neutrino interactions

Charged current quasi-elastic scattering Neutral current elastic scattering Single π , η ,K resonance productions Coherent pion productions Deep inelastic scattering

 $v + n \rightarrow l^{+} + p$ $v + N \rightarrow v + N$ $v + N \rightarrow l + N' + \pi (\eta, K)$ $v + X \rightarrow l + X' + \pi$ $v + N \rightarrow l + N' + m\pi(\eta, K)$

(*I* : lepton, N,N' : nucleon, m : integer)

Use charged lepton

from charged current quasi-elastic scattering (CCQE)

Charged current quasi-elastic scattering (CCQE)

Fitting external data to determine the nominal and the error of the input parameters before fitting the T2K ND280 data

Possible background

Possible background

 v_e appearance NC 1 π^0 production $v + N \rightarrow v + N' + \pi^0$

If one of the γ from decay of π^0 can not be identified, identified as a candidate.

of π^0

~ Interaction cross-section Decay kinematics

~ Momentum distribution of π^0

Source of errors in measuring oscillation parameters ~ Need careful studies

Charged current quasi-elastic scattering (single pion productions)

Fitting external data (mainly from MiniBooNE) to determine the nominal and the error of the input parameters

Neutrino interaction measurements in the near detectors

Measure muon momentum & angular distributions in ND280 Use 3 samples ~ enrich different interaction modes

CC 0π sample

CC $1\pi^+$ sample

CC other sample

Neutrino interaction measurements in the near detectors

Fit neutrino flux and neutrino interaction model parameters

using $p_{\mu} - \cos \theta_{\mu}$ distributions of 3 samples from ND280

Constrain uncertainties on

- 1) Neutrino flux at SK
- 2) Correlated neutrino interaction related parameters

Neutrino interaction measurements in the near detectors Results from the ND280 neutrino interaction measurements

Both uncertainties on neutrino flux and neutrino interaction parameters are well constrained.

Neutrino interaction measurements in the near detectors Measure electron momentum & angular distributions in ND280 Use 3 samples ~ enrich different interaction modes Interactions in FGD and particle ID in TPC Major background: photons from π^0 decays Fit CC0 π , CC1 π^+ + CC Other and γ sideband sample

Validation MC prediction of the intrinsic beam v_e background using the data from ND280.

T2K v_{μ} disappearance analysis arXiv:1403.1532[hep-ex]

 v_{μ} Signal events in SK

Charged current quasi-elastic scattering

 $v_{\mu} + n \rightarrow \mu$ + p

Observed as single ring μ -like event in SK. (μ -like events has sharp ring edge)

Background sources Other charged current interactions Only μ was detected. Some of those background events could be eliminated by using decay electrons for example $\pi \rightarrow \mu \rightarrow \underline{e}$.

protons and/or charged π from neutral current interactions

 $\nu_{\mu}\,\text{Signal}$ events in SK

Event selection criteria Fully contained in fiducial volume 1 ring and identified as μ -like Reconstructed momentum of μ > 200 MeV/c 0 or 1 decay electrons

120 events are selected (6.57 x 10²⁰ pot)

Systematic uncertainties for # of events*

($\sin^2\theta_{23}$, Δm^2_{32} , δCP) = (0.5, 2.4 × 10⁻³ eV²/c⁴, 0)

Systematics	Uncertainties	* Binding energy and SK energy scale		
Flux/XSEC (ND280 constraint)	2.7%	are some of the dominant uncertainties		
Other XSEC	4.9%	but they don't appear in the left table		
Super-K +FSI	5.6%	of # of events since they don't affect		
Total	8.1%	the overall normalization.		

N_{sk} per reconstructed energy (bin) with error

Uncertainties from the vinteractions with multi-nucleon in nucleus

- Lively discussion motivated by CCQE cross section inconsistency between MiniBooNE and the other experiment
- Not incorporated directly into this analysis
 - But we have a large systematic uncertainty (100%) on decays of Δ resonances w/ prompt π absorption (" π -less Δ -decay"). It has similar impact on neutrino energy reconstruction as a 100% uncertainty in the multi-nucleon interaction model (Nieves model)
 - Dedicated MC study shows the impact on oscillation analysis is small relative to our current statistical

Fit results ~ allowed oscillation parameter regions

Phys. Rev. Letter 112, 061802 (2014)

T2K v_e appearance analysis

Charged current quasi-elastic scattering

 $v_e + n \rightarrow \underline{e} + p$

Observed as single ring e-like event in SK

Dominant background

- 1) ν_{e} in the beam intrinsic background
- 2) π^0 identified as 1 ring
 - One γ is not identified small opening angle of 2 rings low momentum faint ring
- Search for the 1 ring e-like events
 No decay electrons
 not π⁰ like (dedicated π⁰ rejection)
 Reconstructed E_ν is in the oscillation region

T2K v_e appearance analysis ~ event selection in SK

- Fully contained event ~ no activity in the outer detector
- Reconstructed in the fiducial volume (> 200cm from the wall)
- 1 ring and PID is electron-like
- Visible energy (electron equiv. energy) > 100 MeV
- No decay electrons
- Reconstructed $E_v < 1.25 \text{ GeV}$
- special π^0 identifier (New π^0 rejection)

Expected # of events and observed # of events

in Run 1 ~ 4 (6.57 x 10²⁰ P.O.T.)

Oscillation parameter fitting

Maximum likelihood fit based on

of observed events in SK ($N_{\mbox{\scriptsize SK}}$) and

observed momentum and direction of electron ($p_{\rm e}, \, \theta_{\rm e}$)

$$L = L_{norm.} \times L_{shape} \times L_{syst.} \times L_{osc.}$$

T2K v_{ρ} appearance analysis

Expected # of events & Systematic uncertainties for # of events

 $(\sin^2\theta_{23}, \Delta m^2_{32}, \delta CP) = (0.5, 2.4 \times 10^{-3} \text{ eV}^2/\text{c}^4, 0)$

Expected # of events w/o ND280 fit $\sin^2 2\theta_{13} = 0.0$ $\sin^2 2\theta_{13} = 0.1$ w/ ND280 fit 3000 0.40 17.30 $\sin^2 2\theta_{13} = 0$ 3.37 3.12 urbitrary unit $\sin^2 2\theta_{23} = 1.0$ 2000 v_{μ} background (mainly NC π^0) 0.94 0.94 $\Delta m_{22}^2 = 2.4 \times 10^{-3} \text{ eV}^2$ (Normal hierarchy) $v_{\mu} + v_e$ background 0.21 0.20 $\delta_{CP} = 0$ 1000 4.92 21.56 6.57×10^{20} p.o.t. 20 Expected number of signal+background events w/o ND280 fit $\sin^2 2\theta_{13} = 0.1$ $\sin^2 2\theta_{13} = 0.0$ $\sin^2 2\theta_{13} = 0.1$ 2000 w/ ND280 fit Beam flux + v int. $\sin^2 2\theta_{23} = 1.0$ 4.8 % 2.9 % $\Delta m_{32}^2 = 2.4 \times 10^{-3} \text{ eV}^2$ arbitrary unit 1500 constrained from ND280 (Normal hierarchy) $\delta_{CP} = 0$ v int. (from other exp.) 7.1 % 7.6 % 1000 6.57×10^{20} p.o.t. + Final state interactions 500 7.3 % 3.5 % + photo nuclear effects 20 30 8.9 %

Expected # of events w/ 6.57×10^{20} POT

Event category

 $v_{\rm e}$ background

Error source

Far detector

 $v_{\rm e}$ signal

Total

٢,	<i>i</i> stomatic	uncertaintig	s for	ovnoctod	# of	avants
2\	/stematic	uncertaintie	25 101	expected	# OI	evenus

Expected number of signal+background events

Total

11.4 %

T2K ν_{e} appearance analysis

Allowed oscillation parameter regions Allowed regions of θ_{13} for various δ_{CP}

Best fit parameters w/ 68% C.L. erros @ $\delta_{CP}=0$ Normal hierarchy $\sin^2 2\theta_{13} = 0.140^{+0.038}_{-0.032}$ Inverted hierarchy $\sin^2 2\theta_{13} = 0.170^{+0.044}_{-0.037}$

Constraints on the other parameters in the fit

Parameter	Value
Δm_{12}^2	$7.6 \times 10^{-5} \text{ eV}^2$
Δm^2_{32}	$2.4 \times 10^{-3} \text{ eV}^2$
$\sin^2 2 heta_{23}$	1.0
$\sin^2 2 heta_{12}$	0.8495
Earth matter density	$2.6~{ m g/cm^3}$
Mass hierarchy	normal
Base-line length	$295 \mathrm{~km}$

Allowed oscillation parameter regions Allowed regions of θ_{13} for various δ_{CP} Comparison with θ_{13} Έ $\delta_{\rm CP}$ (from reactor From T2K **Normal hierarchy** $\Delta m_{32}^2 > 0$ $\sin^2 2\theta_{13} = 0.140^{+0.038}_{-0.032}$ 68% CL 90% CL -0.5 Best fit **Inverted hierarchy** PDG2012 lo range $\sin^2 2\theta_{13} = 0.170^{+0.044}_{-0.037}$ $(\mathbf{E})^{1}$ From reactor experiments (PDG 2012) $\sin^2 2\theta_{13} = 0.098 \pm 0.013$ $\Delta m_{32}^2 < 0$ -0.5 Discrepancy Signature of non-zero δ_{CP} ?? 0.05 0.15 0.2 0.25 0.3 0.35 0.1 0.40

 $\sin^2 2\theta_{13}$

Combined fit with reactor constraints (from PDG 2012) $\frac{\sin^2 2\theta_{13}}{\sin^2 2\theta_{13}} = 0.098 \pm 0.013$

Future Prospects

- ν_e appearance and ν_μ disappearance combined fit
- Realistic (shape-dependent) systematic errors
 - Errors are assumed to be fully correlated between ν /anti- ν

Mid-term plan of MR

FX: We adopt the high repetition rate scheme to achieve the design beam intensity, 750 kW." Rep. rate will be increased from ~ 0.4 Hz to ~1 Hz by replacing magnet PS's and RF cavities.

JFY	2011	2012	2013	2014	201 5	2016	2017
			Li. upgrade				
FX power [kW] SX power :User op. (study) [kW]!	150! 3 (10)	200! 10 (20)	240 ~ (300)! 25 (30)	~ 400! 50 (100)			750! 100
Cycle time of main magnet PS! New magnet PS for high rep.	3.04 s	2.56 s R&D	2.4 s		Manufac nstallati	cture on/test	1.3 s
Present RF system ! New high gradient rf system!	Install. #7,8	Install. #9	R&D	N	/lanufac nstallatio	ture on/test	•
Ring collimators	Additional shields	Add.collimators and shields (2kW)	Add.collimators (3.5kW)				
Injection system! FX system	New injection kicker	Kicker PS improve	ement, Septum 2 manuf r HF septa manufacture	acture /test	•		

Expected POT is estimated based on the information.

$sin^2\theta_{23}/\Delta m^2_{~32}~1\sigma$ Precision vs. POT

Solid Lines: no sys. err.

Red Dashed: with conservative systematic errors (~7% v, ~14% anti-v)

Precisions are expected to be improved drastically

over the next few years.

Statistical limit of 1σ precision at full POT

- $\sin^2\theta_{23}(\theta_{23}) \sim 0.045 (\sim 2.6^\circ)$
- Δm_{32}^2 ~ 4 ×

 $\sim 4 \times 10^{-5} \, eV^2$

Assuming true: $\sin^2 2\theta_{13}=0.1$, $\delta_{CP}=0^\circ$, $\sin^2 \theta_{23}=0.5$, $\Delta m^2_{32}=2.4 \times 10^{-3} \text{ eV}^2$, Normal hierarchy, θ_{13} constrained by $\delta(\sin^2 2\theta_{13}) = 0.005$

Appearance 90% C.L. Sensitivity 7.8 × 10²¹ POT (POT fractions : 50% ν + 50% anti- ν)

Solid Lines: no sys. err., Dashed: with 2012 sys. err. (~10% v_e , ~13% v_{μ})

[NH] Normal hierarchy, [IH] Inverted hierarchy

Assuming true: $\sin^2 2\theta_{13}$ =0.1, $\sin^2 \theta_{23}$ =0.5, Δm^2_{32} =2.4 × 10⁻³ eV², [NH]

Sensitivity for Resolving $\sin \delta_{CP} \neq 0$ 7.8 × 10²¹ POT (POT fractions : 50% v + 50% anti-v)

 θ_{13} constrained by $\delta(\sin^2 2\theta_{13}) = 0.005$

T2K + NOvA Sensitivity for Resolving sin $\delta_{CP} \neq 0$

Both T2K / NOvA : full POT (POT fraction : 50% v + 50% anti-v) Plots are for normal hierarchy

Red: T2K alone, Blue: NOvA alone, Black: T2K + NOvA

Assuming 5% (10%) normalization uncertainty on signal (background) Assuming true: $\sin^2 2\theta_{13}=0.1$, $\Delta m^2_{32}=2.4 \times 10^{-3} \text{ eV}^2$, θ_{13} constrained by $\delta(\sin^2 2\theta_{13}) = 0.005$

T2K + NOvA Sensitivity to Mass Hierarchy

Both T2K / NOvA : full POT (POT fraction : 50% v + 50% anti-v) Plots are for normal hierarchy

Red: T2K alone, Blue: NOvA alone, Black: T2K + NOvA

Assuming true: $\sin^2 2\theta_{13} = 0.1$, $\Delta m^2_{32} = 2.4 \times 10^{-3} \text{ eV}^2$, θ_{13} constrained by $\delta(\sin^2 2\theta_{13}) = 0.005$

Summary

- v_{μ} disappearance results
 - We have measured $\theta_{\rm 23}$ with the world-leading precision
 - New result favors maximal mixing
- v_e appearance results
 - We have constrain the CP violating phase δ_{CP} by combining our v_{e} appearance results with the reactor measurements
 - Best fit is found at very interesting point, $\delta_{CP} \sim -\pi/2$. If it is true, severe competition with NOvA. Important to increase statistics ASAP.

Future sensitivity study

- May be possible to constrain δ_{CP}
- Combined analysis with NOvA enhances the sensitivities to $\delta_{\rm CP}$ and the mass hierarchy
- Higher power at design value (750 kW) beam operation is anticipated.