What is New in the Outer Heliosphere?: Voyager and IBEX

Marty Lee

USA

Our Local Interstellar Environment

From E. Möbius

Pogorelov et al., 2008

Plasma & Neutral Parameters

 $R = 1 AU \qquad R = 100 AU \qquad LISM$

 $n_p = 5 \text{ cm}^{-3}$ $V_{sw} = 400 \text{ km/s}$ $B_0 = 5 \times 10^{-5} \text{ G}$ $V_A = 40 \text{ km/s}$ $n_{He} = 0.015 \text{ cm}^{-3}$

- $n_p = 1 \times 10^{-3} \,\mathrm{cm}^{-3}$
- $V_{sw} = 300 \text{ km/s}$
- $B_0 = 0.3 \times 10^{-6} \,\mathrm{G}$
 - $V_A = 20 \text{ km/s}$ $n_H = 0.1 \text{ cm}^{-3}$
- $n_{He} = 0.015 \text{ cm}^{-3}$

 $n_p = 0.05 \text{ cm}^{-3}$ $V_{ISM} = 23(?) \text{ km/s}$ $B_0 = 3 \times 10^{-6}$ (?) G $V_{A} = 22(?) \text{ km/s}$ $n_{\rm H} = 0.2 {\rm ~cm}^{-3}$ $n_{He} = 0.015 \,\mathrm{cm}^{-3}$

Voyagers 1&2: Still Exploring!

Voyager Trajectories

IBEX Spacecraft

TA004770

- Simple sun-pointed spinner (4 rpm)
- Two huge aperture single pixel ENA cameras:
 - IBEX-Lo (~10 eV to 2 keV)
 - IBEX-Hi (~300 eV to 6 keV)

E. Möbius, UNH SSC, for the IBEX Team

Colloquium Wesleyan University,

Termination Shock is Special

Adventures in the Outer Heliosphere

- •Where is the Shock and ACRs?
- ISM Gas Parameters
- •No Heliospheric Bow Shock
- •First Measurement of Primary ISM H
- "Hydrogen Deflection Plane" (Lallement)
- •The IBEX "Ribbon"
- •Heliosheath $V_r \sim 0$
- •The "Heliocliff"
- •First Measurement of Low-Energy GCRs

Voyager 1 Ions

Decker et al., 2005

Stone et al., 2008

Termination Shock Plasma Data At Voyager 2

Richardson et al., 2008

Pickup Ion Distribution in SW

Voyager 1 Downstream Spectra

Stone et al., 2005

Fig. 3. ACR helium spectra just upstream of the shock (▲) (2004/313 to 350) and in the heliosheath [(O) 2004/352 to 2005/052, (×) 2005/053 to 104, (●) 2005/105 to 156]. The TSP, ACR, and GCR spectra overlap in the observed spectra in Fig. 2. Estimates of the TSP and GCR components have been subtracted in the regions of overlap to determine the ACR He spectra. The ACR He intensity did not reach a maximum at the shock, but continued to rapidly increase at lower energies in the heliosheath, indicating increasingly easy propagation from the ACR source to V1.

Stone et al., 2005

Current Sheets & Reconnection

Pogorelov et al., 2009

Particle acceleration

Particles are accelerated by a series of adiabatic compressions and expansions, in which the particles can escape from a compression region.

Island merging & contraction

Particles are accelerated by merging and Contracting islands.

Ideas of Particle Acceleration (cont.)

Credit: NASA

Diffusive Shock Acceleration

The Blunt Termination Shock

McComas and Schwadron, 2006

Blunt Shock: 2D Simulation for ACR energies

TS is offset circe, small cross field diffusion: $\eta=0.02$

ACR flux increases into the Heliosheath

Spectrum gradually unfolds

Kota, 2010

(New) Puzzles and Controversies

- •Where is the Shock and ACRs?
- ISM Gas Parameters
- •No Heliospheric Bow Shock
- •First Measurement of Primary ISM H
- "Hydrogen Deflection Plane" (Lallement)
- •The IBEX "Ribbon"
- •Heliosheath $V_r \sim 0$
- •The "Heliocliff"
- •First Measurement of Low-Energy GCRs

IBEX Observes He and H

Flow Latitude Distribution

Flow Longitude Distribution

Basic Equations (μ <1 and μ >1)

$$f(v,\phi,\psi)(\overline{V}_{E}^{3}/n) = (\pi t)^{-3/2} \exp\left\{-t^{-1}\left[v^{2}-2r^{-1}(1-\mu)+v_{ISM}^{2}-2v_{ISM}\left[v^{2}-2r^{-1}(1-\mu)\right]^{1/2}\times\left(\cos\theta_{\infty}\cos\beta\cos\lambda-\sin\theta_{\infty}\left[\cos\beta\cos\psi\sin\lambda+\sin\beta\sin\psi\right]\right)\right]\right\}$$
$$\times\left(\cos\theta_{\infty}\cos\beta\cos\lambda-\sin\theta_{\infty}\left[\cos\beta\cos\psi\sin\lambda+\sin\beta\sin\psi\right]\right)\right]$$

$$\cos\theta_{\infty} = \varepsilon^{-2} \left[1 - rv^2 (1 - \mu)^{-1} \sin^2\phi + r^2 v^3 (1 - \mu)^{-2} \left(v^2 - 2r^{-1} (1 - \mu) \right)^{1/2} \sin^2\phi \cos\phi \right]$$

$$\sin\theta_{\infty} = \varepsilon^{-2} \left[\frac{rv^2}{(1-\mu)} \sin\phi\cos\phi + \left(\frac{rv^2}{1-\mu}\right)^{1/2} \left(\frac{rv^2}{1-\mu} - 2\right)^{1/2} \left(\frac{rv^2}{1-\mu}\sin^2\phi - 1\right) \sin\phi \right]$$

 $\varepsilon^{2} = [rv^{2}(1-\mu)^{-1}-1]^{2}\sin^{2}\phi + \cos^{2}\phi$

Sun to Earth Frame

 $V\cos\phi = V'\cos\phi'$

$V\sin\phi\sin\psi = V'\sin\phi'\sin\psi'$

 $V\sin\phi\cos\psi = V'\sin\phi'\cos\psi' - V_E$

Helium Integrated Intensity ψ'/π

t = 0.03

 $\mu = 0$

 $\eta = 0$

 $\beta = 5^{\circ}$

Peak in Latitude

$$f(v,\phi,\psi)(\overline{V}_{E}^{3}/n) = (\pi t)^{-3/2} \exp\left\{-t^{-1}\left[v^{2}-2+v_{ISM}^{2}-2v_{ISM}(v^{2}-2)^{1/2}\times (\cos\theta_{\infty}\cos\lambda - \sin\theta_{\infty}\sin\lambda\cos(\psi + \overline{\beta}))\right] + 2\ln v' - \eta v^{-1}\cos^{-1}\left(-(v^{2}-1)^{-1}\right)\right\}$$

$$\psi_{sc}^{0} = -\frac{v_{0}}{(v_{0}+1)} \frac{\beta}{|\sin\lambda|} - \frac{v_{0}^{2} (\varepsilon_{z} \cos\psi_{sc}^{0} + \varepsilon_{E} \sin\psi_{sc}^{0})}{(v_{0}+1)(v_{0}^{2}-2)^{1/2}} \frac{\sin(\lambda + \theta_{\infty}^{0})}{|\sin\lambda|}$$

1

Independent of Ionization Rate

Best ISM He Parameters

$$\lambda_{ISM\infty} = 79.0^{\circ} \pm 0.47^{\circ}$$

$$\lambda_{ISM\infty} = 75.4 \pm 0.4^{\circ}$$

$$\beta_{ISM\infty} = -4.98^\circ \pm 0.21^\circ$$

 $V_{ISM\infty} = 23.2 \pm 0.3 \,\mathrm{km \, s^{-1}}$

$$T_{ISM\infty} = 6300 \pm 390 \text{ °K}$$

(New) Puzzles and Controversies

- •Where is the Shock and ACRs?
- ISM Gas Parameters
- •No Heliospheric Bow Shock
- •First Measurement of Primary ISM H
- "Hydrogen Deflection Plane" (Lallement)
- •The IBEX "Ribbon"
- •Heliosheath $V_r \sim 0$
- •The "Heliocliff"
- •First Measurement of Low-Energy GCRs

No Bow Shock!

McComas et al., 2012

(New) Puzzles and Controversies

- •Where is the Shock and ACRs?
- ISM Gas Parameters
- •No Heliospheric Bow Shock
- •First Measurement of Primary ISM H
- "Hydrogen Deflection Plane" (Lallement)
- •The IBEX "Ribbon"
- •Heliosheath $V_r \sim 0$
- •The "Heliocliff"
- •First Measurement of Low-Energy GCRs

Interstellar Hydrogen

Schwadron et al., 2013

Hydrogen Speed, Temperature and λ

Schwadron et al., 2013

Radiation Pressure on H

Schwadron et al., 2013

(New) Puzzles and Controversies

- •Where is the Shock and ACRs?
- ISM Gas Parameters
- •No Heliospheric Bow Shock
- •First Measurement of Primary ISM H
- "Hydrogen Deflection Plane" (Lallement)
- •The IBEX "Ribbon"
- •Heliosheath $V_r \sim 0$
- •The "Heliocliff"
- •First Measurement of Low-Energy GCRs

Origin of Secondaries

Primary and Secondary H

Pogorelov et al., 2008

(New) Puzzles and Controversies

- •Where is the Shock and ACRs?
- ISM Gas Parameters
- •No Heliospheric Bow Shock
- •First Measurement of Primary ISM H
- "Hydrogen Deflection Plane" (Lallement)The IBEX "Ribbon"
- •Heliosheath $V_r \sim 0$
- •The "Heliocliff"
- •First Measurement of Low-Energy GCRs

IBEX Reveals the "Ribbon"

IBEX-Hi (0.9-1.5 keV)

Differential Flux [ENAs/(cm² s sr keV)]

0 10	0 20	00	800

IBEX-Hi (0.6-1.0 keV)

Differential Flux [ENAs/(cm² s sr keV)]

20	00 40	0 600)

Secondary ENAs as Source for the IBEX Ribbon

(New) Puzzles and Controversies

- •Where is the Shock and ACRs?
- ISM Gas Parameters
- •No Heliospheric Bow Shock
- •First Measurement of Primary ISM H
- "Hydrogen Deflection Plane" (Lallement)
- •The IBEX "Ribbon"
- •Heliosheath $V_r \sim 0$
- •The "Heliocliff"
- •First Measurement of Low-Energy GCRs

Voyager in the Transition Layer

- Zero radial outflow !
- Increase of tangential speed

Krimigis et al., 2011

Time-Dependent Heliosheath

(New) Puzzles and Controversies

- •Where is the Shock and ACRs?
- ISM Gas Parameters
- •No Heliospheric Bow Shock
- •First Measurement of Primary ISM H
- "Hydrogen Deflection Plane" (Lallement)
- •The IBEX "Ribbon"
- •Heliosheath $V_r \sim 0$
- •The "Heliocliff"
- •First Measurement of Low-Energy GCRs

Voyager at the Heliopause?

Voyager 1: Heliosheath particles escape, GCRs enter & B increases

Voyager 1: Angular distributions of protons 3.4-17.6 MeV (1-d avg.) 2012/183-330

Voyager in the Heliosheath

Voyager 1 Magnetic Field and Charged Particles

Magnetic Field Observations

Voyager 1 Magnetic Field Strength and Direction

(New) Puzzles and Controversies

- •Where is the Shock and ACRs?
- ISM Gas Parameters
- •No Heliospheric Bow Shock
- •First Measurement of Primary ISM H
- "Hydrogen Deflection Plane" (Lallement)
- •The IBEX "Ribbon"
- •Heliosheath $V_r \sim 0$
- •The "Heliocliff"

•First Measurement of Low-Energy GCRs

The Current Picture of the Heliosphere

McComas et al. 2012