Latest Results from T2K

Observation of Electron Neutrino Appearance from a Muon Neutrino Beam

Shoei Nakayama Kamioka Observatory, ICRR

July 19, 2013 ICRR seminar

Official release of this result is to be at EPS conference in Stockholm.

Strict press embargo time : 21:30 (JST) on July 19th, 2013 No e-mails, no phone calls, no blogs, no tweets, ... until 21:30

Summary

- T2K has made the definitive observation of v_e appearance from the v_{μ} beam
 - Using 6.39×10²⁰ Protons-On-Target beam data (×2.1 of 2012 analysis) obtained by the stable beam and detector operations
 - Analysis improvements also contributed : Improved Near v Detector analysis, Improved π⁰ background rejection at Super-K Far v Detector, ...
 - 28 candidate events over 4.6±0.5(sys.) backgrounds
 - θ_{13} =0 is excluded at 7.5 σ
 - → We have entered the era of v_e appearance "measurement" for exploring the leptonic CPV and v mass hierarchy !
- Now is the time to realize a new project in Japan
 - Hyper-K has great potential for discovering new physics
 - Need your strong support to the project

Flavor eigenstate $(v_e, v_\mu, v_\tau) \neq Mass$ eigenstate (v_1, v_2, v_3) 0

$$\begin{pmatrix} v_{\alpha} \\ v_{\beta} \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \end{pmatrix}$$
Two-flavor case
 $\alpha, \beta =$ Flavor states
1, 2 = Mass states

Probability that a neutrino originally generated as ν_{α} will 0 later be observed as ν_β after traveling a distance of L :

Unknowns in Neutrino Oscillation Parameters

θ_{13} Measurements

• Reactor neutrino experiments : \overline{v}_e disappearance

$$P(\overline{v}_e \to \overline{v}_e) \approx 1 - \sin^2(2\theta_{13}) \sin^2(\frac{1.27\Delta m_{31}^2 L(m)}{E_v(MeV)}) \quad Pure \ \theta_{13} \ measurement$$

• Accelerator neutrino experiments : v_e appearance

$$P(v_{\mu} \rightarrow v_{e}) \approx \sin^{2}(2\theta_{13}) \sin^{2}\theta_{23} \sin^{2}(\frac{1.27\Delta m_{31}^{2}L(km)}{E_{\nu}(GeV)})$$
Sub-
leading
terms
 $\delta \rightarrow -\delta$
 $a \rightarrow -a$
Complementa

$$P(v_{\mu} \rightarrow v_{e}) \approx \sin^{2}(2\theta_{13}) \sin^{2}\theta_{23} \sin^{2}\theta_{23} \sin^{2}(\frac{1.27\Delta m_{31}^{2}L(km)}{E_{\nu}(GeV)})$$

$$= 48C_{13}^{2}S_{12}S_{13}S_{23}(C_{12}C_{23}\cos\delta) - S_{12}S_{13}S_{23}) \cdot \cos\Delta_{32} \cdot \sin\Delta_{31} \cdot \sin\Delta_{21}$$

$$= -8C_{13}^{2}C_{12}C_{23}S_{12}S_{13}S_{23}(\sin\delta) \cdot \sin^{2}\Delta_{21}$$

$$= -8C_{13}^{2}S_{13}^{2}S_{23}^{2} \cdot \frac{aL}{4E_{\nu}} - 2S_{13}^{2}) \cdot \cos\Delta_{32} \cdot \sin\Delta_{31}$$

$$= 8C_{13}^{2}S_{13}^{2}S_{23}^{2} \cdot \frac{aL}{4E_{\nu}} - 2S_{13}^{2}) \cdot \sin^{2}\Delta_{31}$$

$$= 8C_{13}^{2}S_{13}^{2}S_{23}^{2} \cdot \frac{aL}{4E_{\nu}} - 2S_{13}^{2}) \cdot \sin^{2}\Delta_{31}$$

$$= 8C_{13}^{2}S_{13}^{2}S_{23}^{2} \cdot \frac{a}{\Delta m_{31}^{2}} - 2S_{13}^{2}) \cdot \sin^{2}\Delta_{31}$$

$$= 8C_{13}^{2}S_{13}^{2}S_{23}^{2} \cdot \frac{a}{\Delta m_{31}^{2}} - 2S_{13}^{2}) \cdot \sin^{2}\Delta_{31}$$

$$= 8C_{13}^{2}S_{13}^{2}S_{23}^{2} \cdot \frac{a}{\Delta m_{31}^{2}} - 2S_{13}^{2}) \cdot \sin^{2}\Delta_{31}$$

$$= 8C_{13}^{2}S_{13}^{2}S_{23}^{2} \cdot \frac{a}{\Delta m_{31}^{2}} - 2S_{13}^{2}) \cdot \sin^{2}\Delta_{31}$$

$$= 8C_{13}^{2}S_{13}^{2}S_{23}^{2} \cdot \frac{a}{\Delta m_{31}^{2}} - 2S_{13}^{2}) \cdot \sin^{2}\Delta_{31}$$

$$= 8C_{13}^{2}S_{13}^{2}S_{23}^{2} \cdot \frac{a}{\Delta m_{31}^{2}} - 2S_{13}^{2}) \cdot \sin^{2}\Delta_{31}$$

$$= 8C_{13}^{2}S_{13}^{2}S_{23}^{2} \cdot \frac{a}{\Delta m_{31}^{2}} - 2S_{13}^{2}) \cdot \sin^{2}\Delta_{31}$$

$$= 8C_{13}^{2}S_{13}^{2}S_{23}^{2} \cdot \frac{a}{\Delta m_{31}^{2}} - 2S_{13}^{2}) \cdot \sin^{2}\Delta_{31}$$

for $P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e})$

Opens the possibility to explore CPV in the lepton sector

T2K (Tokai-to-Kamioka) Experiment

International Collaboration

~500 members from 11 nations

Discovery of v_e appearance ($v_{\mu} \rightarrow v_e$ oscillation)

- Direct detection of v flavor mixing ($\theta_{13} \neq 0$) by an "appearance" channel
- Opens the possibility to probe the leptonic CP violation

Precision measurement of ν_{μ} disappearance

■ $\delta(\Delta m_{32}^2) \sim 1 \times 10^{-4} \text{ eV}^2$, $\delta(\sin^2 2\theta_{23}) \sim 0.01$

T2K Data-Taking and ν_e Search History

Data Set in this Talk

Steady beam data accumulation during T2K RUN4

- Beam power reached 235kW
- Very stable Super-K operation : livetime ~99%

Previous analysis (2012) : RUN1+2+3, 3.010×10²⁰ POT (Protons-On-Target)

More than ×2

This analysis (2013) : RUN1+2+3+4 (by April 12th), 6.393×10²⁰ POT

Analyzed up to

April 12th, 2013

Off-axis v beam

Intense narrow-band @osc. max. (~0.6GeV)

 Reduce high energy tail which creates BG

Off-axis v detector (ND280)

measures v flux/spectrum before oscillations @2.5° OA

0.2T magnet field

Fine-Grained Detectors (FGDs)

Scintillator strips, 1.6t fiducial target, Detailed vertex info.

Time Projection Chamber (TPCs)

Gas ionization, Momentum by curvature, PID by dE/dx

Beam Stability

INGRID on-axis ν detector monitors beam intensity, direction, and profile

- POT normalized v event rate is very stable (<1%)
- Beam direction is controlled well within the design requirement of 1mrad (→ 2% shift in the peak energy of v spectrum)

:tor:Super-Kamiokande

Ikeno-yama Kamioka-cho, Gifu Japan Univ. 2011/3/1

2-body kinematics)

Un-oscillated

neutron

3km 🔊

MC

≁ proton

(2700mwe

2km

Atotsu

1km

SK

θ,

 \mathbf{O}

- 50kton Water Cherenkov detector
 - 22.5kton fiducial mass
 - World largest "v & proton-decay" detector
- Located in the Kamioka Observatory
 - 295km from J-PARC
- **Excellent** detection capability 0
 - Ring-suaped pattern on the detector wall
- Atmospheric v data as control samples 0 to study detector performance
- T2K trigger records all the PMT hits 0 within $\pm 500 \mu s$ of the beam arrival time
 - Time synchronization by GPS

Electron/Muon PID at Super-K

- Particle identification using ring shape and opening angle
- Probability that a muon is misidentified as an electron is <1%
 - Very small v_{μ} CC background for v_{e} appearance search

Signal and BG for T2K ν_{e} appearance search

O Signals

Single electron event by CC interaction of v_e oscillated from v_{μ}

- Mainly CCQE : $v_e + n \rightarrow e^- + p$
- Protons mostly have momenta below Cherenkov threshold

O Backgrounds

(1) intrinsic v_e in the beam (from μ , K decays)

- (2) NC single π^0 events
 - overlap of 2 γ rings
 - asymmetric decay
 (one of the γ has very low energy)

Oscillation Analysis Strategy

Neutrino Flux

MC simulation of beamline based on hadron production meas. (NA61/ SHINE) and beam monitor meas. Neutrino Interaction Model (NEUT) tuned/constrained with external data

ND280 Measurements

- ν_µCC enhanced samples
 (CC0π, CC1π⁺, and CCother)
- Intrinsic ν_e and NC π⁰
 measurements as cross-check

SK Prediction

SK Data : v_e candidates

Constraint on

flux & cross section

Oscillation parameter fit

PRD 87, 012001 (2013)

Predicted Neutrino Flux

Near Detector Constraint on SK Prediction

• SK flux parameters are constrained through their prior correlations with the ND280 v_{μ} flux parameters

 ν_e and ν_μ fluxes are correlated through parent hadrons

$$\pi^{+} \rightarrow \mu^{+} \nu_{\mu}$$

$$\downarrow e^{+} \nu_{e} \overline{\nu}_{\mu}$$

• Subset of cross section parameters are correlated at near & far detectors : M_A^{QE} , M_A^{RES} , CCQE/CC1 π /NC1 π^0 normalizations

New v_{μ} CC sample classification : CC0 π , CC1 π^+ , CCother

- In 2012 analysis, 2 categories : CCQE-like (1 track) & CCnonQE-like (2 tracks)
- Much better samples for constraining CCQE & CC1 π cross section parameters

Data are binned in two dimensions : μ momentum (p) and angle (cos θ)

• Finer binning than 2012 analysis

Composition	CCQE	63.5 %		
	Resonant	20.2 %		
	DIS	7.5 %		
	Coherent	1.4 %		
	Other	7.4 %		

CCQE	5.3 %	
Resonant	39.5 %	
DIS	31.3 %	
Coherent	10.6 %	
Other	13.3 %	

CCQE	3.9 %		
Resonant	14.3 %		
DIS	67.8 %		
Coherent	1.4 %		
Other	12.6 %		

Near Detector Distributions after the Fit

Constrained SK Flux and Cross Section Params

Parameter	Prior to ND Constraint	After ND Constraint	
M _A ^{QE} (GeV)	1.21 ± 0.45	1.22 ± 0.07	
M _A ^{RES} (GeV)	1.41 ± 0.22	0.96 ± 0.06	
CCQE norm.	1.00 ± 0.11	0.96 ± 0.08	
CC1π norm.	1.15 ± 0.32	1.22 ± 0.16	

Significant error reduction

T2K $\nu_{\rm e}$ event selection at Super-K

- 1. Beam on-timing & Fully-contained (FC) in the inner detector
- 2. Vertex in the fiducial volume
- 3. Number of rings = 1
- 4. Electron-like PID
- 5. Visible energy > 100MeV
 - \checkmark rejects low energy NC events and electrons from invisible μ , π decays
- 6. No delayed electron signal
 - \checkmark rejects events with invisible μ , π
- 7. Reconstructed v energy < 1.25GeV
 - \checkmark rejects intrinsic beam $\nu_{\rm e}$ at high energy

8. Non- π^0 -like

Improved by New Algorithm

Developed new π^0 rejection algorithm. The other cuts unchanged.

A New Event Reconstruction Tool : fiTQun

$$L(\mathbf{x}) = \prod_{i}^{\text{unhit}} P(i\text{unhit}|\mathbf{x}) \prod_{i}^{\text{hit}} P(i\text{hit}|\mathbf{x}) f_q(q_i|\mathbf{x}) f_t(t_i|\mathbf{x})$$
Unhit probability Hit probability Charge likelihood Time likelihood

- A maximum likelihood fitter
- For a given track(s) hypothesis, a charge and time PDF is produced for every PMT
 - Charge PDF can be factorized into predicted charge and PMT response
- Track parameters **x** (vertex, direction, momentum, ...) are fit simultaneously to maximize the likelihood
 - Step-by-step reconstruction in the previous algorithm \leftrightarrow
 - For PID, compare final likelihoods for π^0 and electron assumptions

π^0 Background Rejection by fiTQun

Conversion point

This time, we use the fiTQun reconstruction only at the π^0 rejection cut (fiTQun will also improve vertex/angle/momentum resolutions, PID, etc.)

Vertical : Likelihood ratio of π^0 and 1-ring electron hypotheses

Clear separation

π^0 Background Rejection by fiTQun

Performance evaluation using " π^0 particle guns" MC (with a flat momentum 0-500MeV/c)

fiTQun doesn't have such a pileup at zero, and the low mass tail is lower than POLfit.

Improved performance

Predicted Number of Events at Each Cut

		ν _μ CC	v_e CC	NC	BG all	Sig. ν_{e}		2-0
	True FV	308	15.0	272	594	25.6	w/ :	$\sin^2 2\theta_{13} = 0.1$
(2)	FCFV	234	14.4	76.5	325	24.8	6.3	93×10 ²⁰ POT
(3)	1 ring	135	9.2	21.6	166	21.5		
(4)	e-like	5.3	9.1	14.9	29.3	21.2	un	it = events
(5)	E _{vis} >100MeV	3.5	9.1	12.7	25.2	20.9		
(6)	No decay-e	0.7	7.4	10.6	18.7	18.6		
(7)	E_v^{rec} < 1.25 GeV	0.2	3.5	8.0	11.8	17.9	_	
(8)	fiTQun π^0 cut	0.06	3.1	0.9	4.0	16.4	~	New Cut
	Efficiency	<0.1%	20%	0.3%	0.7%	64%		
(8)'	POLfit π^0 cut	0.12	3.2	2.3	5.6	16.8	←	
	Efficiency	<0.1%	21%	0.8%	0.9%	66%		

NC BG reduced to ~40% compared to previous v_e selection with keeping signal efficiency high

Far Detector (Super-K) Stability

Far Detector (Super-K) Systematics

Dominant error coming from the ring-counting, PID, π^0 rejection cuts

Error for v_e CC components :

Number of events in each (p_e, θ_e) in the atmospheric ν control sample is fit to evaluate the sys. errors on efficiencies

Error for π^0 BG components :

 π⁰ topological control sample combining one data electron and one simulated γ (hybrid π⁰)

SK systematic error on predicted # of ne candidates is reduced (thanks to the new π^0 rejection)

3.0% (2012) $\rightarrow 2.4\%$ @sin²2 θ_{13} =0.1

Predicted Number of v_e Candidate Events

Predicted # of events w/ 6.393×10 ²⁰ p.o.t.						
Category	sin ² $2\theta_{13}$	= 0 sin ²	$\sin^2 2\theta_{13} = 0.1$			
v_e signal	0.38		16.42			
v_{e} BG	3.17		2.93			
v_{μ} BG	0.89		0.89			
$\overline{\nu}_{\mu}^{'} + \overline{\nu}_{e} BG$	0.20		0.19			
Total	4.64 ± 0	4.64 ± 0.52 20.44				
	Systematic U	es				
Source	sin	$^{2}2\theta_{13}=0$	= 0.1			
Flux + v int. (ND meas.)		4.9 %	3.0 %			
v int. (fr	om other exp.)	6.7 %	7.5 %			
Super-K	+FSI+SI+PN	7.3 %	3.5 %			
Total		11.1 %	8.8%			
Total (2	2012)	130%	99%			
Total (2	2012)	13.0 %	9.9 %			

Predicted # of events w/ sys. error w/o ND meas. 3000 w/ ND meas. arbitrary unit $\sin^2 2\theta_{13} = 0$ 2000 $\frac{\sin^2 2\theta_{23} = 1.0}{\Delta m_{32}^2 = 2.4 \times 10^{-3} \text{ eV}^2}$ (Normal hierarchy) $\delta_{CP} = 0$ 1000 6.4×10^{20} p.o.t. 10 5 15 20 w/o ND280 fi $2000 = \sin^2 2\theta_{13} = 0.1$ ND280 fit $\sin^2 2\theta_{23} = 1.0$ $\Delta m_{32}^2 = 2.4 \times 10^{-3} \,\mathrm{eV}^2$ arbitrary unit 1500 (Normal hierarchy) $\delta_{CP} = 0$ 1000 6.4×10^{20} p.o.t. 500 10 20 30 40

Expected number of signal+background events

Uncertainty reduced much by the ND measurement

T2K Event Selection at Super-K

T2K ν_{e} Event Selection at Super-K

- Number of rings = 1
 186 events
- 4. Electron-like PID 58 events
- 5. Visible energy >100MeV

Rejects low-E NC events, and electron from invisible μ , π

55 events

6. No μ decay electron Rejects events with invisible μ , π

43 events

T2K v_e Event Selection at Super-K (cont'd)

7. Reconstructed $E_v < 1.25 \text{ GeV}$

Reject intrinsic v_e in the beam (high energy v_e mainly from K)

8. fiTQun π^0 rejection cut

Reject events with π^0

38 events

4.64 ± 0.52 events expected for $sin^2 2\theta_{13}=0$ 20.44 ± 1.80 events expected for $sin^2 2\theta_{13}=0.1$

Observed ν_{e} Candidate Events (Several Examples)

All events have a clear showering ring

 ν_e Candidate Event Distributions

Reasonable distributions

Oscillation Parameter Fits

- Method 1 : Maximum likelihood fit w/ Rate + (p_e , θ_e) shape
- Method 2 : Maximum likelihood fir w/ Rate + reconstructed E_v

 (p_1, θ_1)

Sensitivity (Expected Significance to Exclude θ_{13} =0)

Averaged log likelihood curve over many toy data with true sin²2 θ_{13} =0.1

(Assuming $\delta_{CP}=0$, sin²2 $\theta_{23}=1.0$, and normal mass hierarchy)

Significance = $\sqrt{-2\Delta lnL_{\theta_{13}=0}}$

RUN1-4 Data Fit Results : Method 1 (p- θ)

θ_{13} =0 is excluded at 7.5 σ \rightarrow Definitive observation of electron neutrino appearance !

T2K preliminary

RUN1-4 Data Fit Results : Method 1 (p- θ)

of events

36

T2K preliminary

37

RUN1-4 Data Fit Results : Method 2 (rec. E_v)

Consistent with Method 1 results

Effect of θ_{23} Uncertainty

• v_e appearance probability also depends on the value of θ_{23} $P(v_{\mu} \rightarrow v_e) \approx \sin^2 2\theta_{13} \sin^2 \theta_{23} \sin^2 (\Delta m_{31}^2 L/4E)$

O T2K v_e appearance measurement in cooperation with other experiments may give some hint on θ_{23} octant

T2K Next Step : Can T2K measure δ_{CP} /Mass Hierarchy/ θ_{23} Octant ?

T2K will make run plans (anti-v run, ...) based on these studies

Observation of v_e appearance has just been made by T2K \rightarrow We've entered the era of v_e appearance "measurement"

T2K may constrain δ_{CP} , mass hierarchy, and θ_{23} octant (in cooperation with reactor experiments, NOvA, and SK) But, significance may not be large

To get a definitive conclusion on CPV and to measure δ_{CP} , next generation long-baseline experiments are indispensable Higher intensity beam + Larger neutrino detector

NOW IS THE TIME to realize a new project in Japan

arXiv:1109.3262

Hyper-Kamiokande Project

Total Mass: 0.99 Mton Fiducial Mass: 0.56 Mton (x25 of Super-K)

Next generation Mega-ton scale Water Cherenkov detector

- Exploring full picture of neutrino oscillation
 - w/ Higher intensity v beam from J-PARC, Atmospheric v
- Astrophysical neutrinos
 - Solar v, Supernova, WIMP, solar flare, ...
- Neutrino geophysics
- O Proton decay search

δ_{CP} Measurement (Accelerator v)

Mass Hierarchy & θ_{23} Octant Sensitivity (Atm. v)

- <10 years HK atmospheric v data can determine the MH w/ 3σ . (Higher significance and earlier in larger θ_{23} case)
- 0 If $\sin^2 2\theta_{23} < 0.99$ ($\sin^2 \theta_{23} < 0.45$ or >0.55), θ_{23} octant can be determined at $>3\sigma$ using 10 years of HK atmospheric v data.

More Hyper-K Physics

Nucleon decay search

- x10 better sensitivity than SK
- >3σ discovery is possible for lifetime beyond SK limits

<u>Supernova burst ν </u>

- 250,000 v (SN@10kpc)
- Variation of v luminosity, temperature, flavor, ...
- MH determination ?

Super-K Hyper-K $p \rightarrow e^{+}\pi^{0}$ v_e+p No oscillation Neutronization $v+e^{2}$ No oscillation Oscillation I.H. 10 a - a v K i Oscillation N.H $\rightarrow v K^{*}cos$ 10³⁴ 10³⁵ 1032 1033 0.02 0.04 0.06 0.08 01 τ/B (years) Time (sec)

- 200 solar v /day $\rightarrow \sim 3\sigma$ day/night asym.
- WIMP ν , Solar flare ν , ...

<u>Relic supernova v</u>

80events/year (w/ Gd)

Energy (MeV) 44

R&D Work and Studies ongoing

- Detector design optimization
 - Cavern stability, Tank shape, Number of compartments, PMT support structure, ...
- New photo-sensor development
 - Hybrid Photo Detector (HPD),
 Higher QE photo-cathode
- Water purification system
- o Electronics/DAQ system
 - Electronics immersed in water ?
- Software development
- Physics potential studies
 - Requirements for near detectors

Better performance w/ lower cost

International Hyper-K Working Group

- Hyper-K is open to the international community
- Three open meetings at IPMU (Kashiwa)
 - 1st mtg in August 2012
 - 2nd mtg in January 2013
 - 3rd mtg in June 2013
 - ~100 participants at each mtg.
 ~50% from abroad
- o Formed international WG
 - Canada, Spain, Switzerland,
 Russia, U.K., U.S., and Japan

You are VERY WELCOME to join us !

http://indico.ipmu.jp/indico/conferenceDisplay.py?confld=7 http://indico.ipmu.jp/indico/conferenceDisplay.py?confld=10

http://indico.ipmu.jp/indico/conferenceDisplay.py?confId=23

Summary

- T2K has made the definitive observation of v_e appearance from the v_{μ} beam
 - Using 6.39×10²⁰ Protons-On-Target beam data (×2.1 of 2012 analysis) obtained by the stable beam and detector operations
 - Analysis improvements also contributed : Improved Near v Detector analysis, Improved π⁰ background rejection at Super-K Far v Detector, ...
 - 28 candidate events over 4.6±0.5(sys.) backgrounds
 - θ_{13} =0 is excluded at 7.5 σ
 - → We have entered the era of v_e appearance "measurement" for exploring the leptonic CPV and v mass hierarchy !
- Now is the time to realize a new project in Japan
 - Hyper-K has great potential for discovering new physics
 - Need your strong support to the project

Supplement