Lyman- α Radiation Transfer effects in galaxies

Anne Verhamme

Observatoire de Genève

anne.verhamme@unige.ch

Ly α : a unique tool...

...to observe the formation and evolution of galaxies

- Hydrogen constitues ~ 90% of the atoms in the Universe
- Lyα is the strongest recombination line
- UV line, redshifted to visible at 2 < z < 6.6 and to IR until z ~ 20 !

F10. 3.—This curve represents semi-quantitatively the expected spectra of young galaxies in the extreme case that all photons of ionizing radiation have been converted to Lyman photons (§ IIe). The expected Lyman-finite scalculated with $\Delta x = 0.002 \ s$ for the line.

 \rightarrow the same observational signature to probe all epochs

Ly α : a unique tool...

...to observe the formation and evolution of galaxies

- Hydrogen constitues \sim 90% of the atoms in the Universe
- Lyα is the strongest recombination line
- UV line, redshifted to visible at 2 < z < 6.6 and to IR until z ~ 20 !

 \rightarrow the same observational signature to probe all epochs

Most distant galaxies are Ly α emitters

Pentericci et al. 2011 (see also lye+06, Rhoads+12, Ono+12, Schenker+12)

Faintest galaxies are Ly α emitters

Not only galaxies emit Ly α

Ly α , a unique tool to model galaxy formation and evolution

Table of Contents

Observational Constraints

- Ly α emission from unresolved sources : LAEs /LBGs
- Ly α diffuse emission from spacially resolved sources

Ly α Radiation Transfer modeling

- Idealised transfer calculations
- Semi-analytical modeling
- Numerical experiments
 - \bullet Modelling Ly α emission from galaxies
 - Modelling the Ly α polarisation of blobs

3 Conclusions and perspectives

Ly α emission from unresolved sources : LAEs /LBGs Ly α diffuse emission from spacially resolved sources

Ly α emission from unresolved sources : LAEs /LBGs

Ly α emission from unresolved sources : LAEs /LBGs Ly α diffuse emission from spacially resolved sources

Ly α emission from unresolved sources : LAEs /LBGs

Ouchi et al. 2010

Ly α emission from unresolved sources : LAEs /LBGs Ly α diffuse emission from spacially resolved sources

Ly α emission from unresolved sources : LAEs /LBGs

Kashikawa et al. 2011

ICRR, Tokyo

Ly α emission from unresolved sources : LAEs /LBGs Ly α diffuse emission from spacially resolved sources

Ly α emission from unresolved sources : LAEs /LBGs

Ouchi et al. 2010

Ly α emission from unresolved sources : LAEs /LBGs Ly α diffuse emission from spacially resolved sources

Ly α emission from unresolved sources : LAEs /LBGs

Hayes et al. 2010

Ly α emission from unresolved sources : LAEs /LBGs Ly α diffuse emission from spacially resolved sources

Ly α emission from unresolved sources : LAEs /LBGs

0.1 Observational constraints 10 • Ly α luminosity functions 1.0 • Ly α EW distributions З 0.1 • Ly α spectral shapes 0.01 • Ly α escape fractions • clustering of Ly α sources 15 Q. 10 5 0 10

Ouchi et al. 2010

Mpc h_{70}^{-1}

100

 θ (arcsec)

10

100

z = 6.6

ICRR, Tokyo

1000

Ly α emission from unresolved sources : LAEs /LBGs Ly α diffuse emission from spacially resolved sources

Ly α emission from unresolved sources : LAEs /LBGs

Ono et al. 2012

(see also Pentericci et al. 2011, Stark et al. 2011)

ICRR, Tokyo

Anne Verhamme

Ly α Radiation Transfer

 ${\rm Ly}\alpha$ emission from unresolved sources : LAEs /LBGs ${\rm Ly}\alpha$ diffuse emission from spacially resolved sources

Ly α diffuse emission from spacially resolved sources

Steidel et al. 2011 (see also Matsuda+12... and Feldmeier+13)

 $Ly\alpha$ emission from unresolved sources : LAEs /LBGs $Ly\alpha$ diffuse emission from spacially resolved sources

Ly α diffuse emission from spacially resolved sources

Pentericci et al. 2010

 $Ly\alpha$ emission from unresolved sources : LAEs /LBGs $Ly\alpha$ diffuse emission from spacially resolved sources

Ly α diffuse emission from spacially resolved sources

Pentericci et al. 2010

LARS, the Lyman Alpha Reference Sample

- 14 star-forming galaxies from SDSS + GALEX
- GALEX FUV luminosities 9.3 to 10.7 Lo
- 0.029 < *z* < 0.18
- Hα EW > 90Å
- Removal of AGN from BPT diagram
- the LARS team : G. Ostlin(PI), M. Hayes(PI), A. Adamo, H. Atek, N. Bergvall, J. Cannon, F. Duval, L. Guaita, D. Kunth, P. Laursen, C. Leitherer, T. Marquart, J. M. Mas-Hesse, J. Melinder, H. Oti-Floranes, I. Orlitova, T. Rivera-Thorsen, A. Sandberg, D. Schaerer, A. Verhamme

 $Ly\alpha$ emission from unresolved sources : LAEs /LBGs $Ly\alpha$ diffuse emission from spacially resolved sources

LARS, the Lyman Alpha Reference Sample

ICRR, Tokyo

Anne Verhamme

Ly α Radiation Transfer

Ly α emission from unresolved sources : LAEs /LBGs Ly α diffuse emission from spacially resolved sources

LARS, the Lyman Alpha Reference Sample Hayes+13

HST-WFC3 images, Ly α in blue, H α in red, UV continuum in green

 $Ly\alpha$ emission from unresolved sources : LAEs /LBGs $Ly\alpha$ diffuse emission from spacially resolved sources

LARS, the Lyman Alpha Reference Sample Hayes+13

ICRR, Tokyo

Anne Verhamme

 $Ly\alpha$ emission from unresolved sources : LAEs /LBGs $Ly\alpha$ diffuse emission from spacially resolved sources

LARS, the Lyman Alpha Reference Sample Hayes+13

16.07.13

 $Ly\alpha$ emission from unresolved sources : LAEs /LBGs $Ly\alpha$ diffuse emission from spacially resolved sources

LARS, the Lyman Alpha Reference Sample

Ly α emission from unresolved sources : LAEs /LBGs Ly α diffuse emission from spacially resolved sources

Ly α diffuse emission from spacially resolved sources Polarisation of Ly α -blobs _{Dijkstra+08, Prescott+11}

Hayes et al. 2011

ICRR, Tokyo

Anne Verhamme

Ly α Radiation Transfer

Idealised transfer calculations Semi-analytical modeling Numerical experiments

Observational Constraints

- Ly α emission from unresolved sources : LAEs /LBGs
- Lyα diffuse emission from spacially resolved sources

Ly α Radiation Transfer modeling

- Idealised transfer calculations
- Semi-analytical modeling
- Numerical experiments
 - Modelling Ly α emission from galaxies
 - Modelling the Ly α polarisation of blobs

3 Conclusions and perspectives

Idealised transfer calculations Semi-analytical modeling Numerical experiments

Analytic Ly α RT

through slab or sphere

- Neufeld 1990, Dijkstra+2006, Roy+2009, Meiksin+2012
- Lyα emergent spectra and escape fraction

Idealised transfer calculations Semi-analytical modeling Numerical experiments

Analytic Ly α RT

through slab or sphere

- Neufeld 1990, Dijkstra+2006, Roy+2009, Meiksin+2012
- Lyα emergent spectra and escape fraction

Idealised transfer calculations Semi-analytical modeling Numerical experiments

Expanding shells Verhamme et al. 2006

Idealised transfer calculations Semi-analytical modeling Numerical experiments

Fitting of observed Ly α spectra

12 LBGs at 3 < *z* < 5

Schaerer& Verhamme 2008, Verhamme+08, Schaerer+11

- profiles diversity reproduced by a single model
- librairy of ~ 6500 synthetic spectra for the use of the community
- used by several collaborators Atek+09,Hayes+10,Vanzella+10,

Lidman+12, Dessauges+12, Garel+12

Idealised transfer calculations Semi-analytical modeling Numerical experiments

Fitting of observed Ly α spectra

12 LBGs at 3 < *z* < 5

Schaerer& Verhamme 2008, Verhamme+08, Schaerer+11

- profiles diversity reproduced by a single model
- librairy of ~ 6500 synthetic spectra for the use of the community
- used by several collaborators Atek+09,Hayes+10, Vanzella+10,

Lidman+12, Dessauges+12, Garel+12

clumpy outflows

Dijkstra+12, Duval+13, Laursen+13

Idealised transfer calculations Semi-analytical modeling Numerical experiments

semi-analytical modeling

ICRR, Tokyo

Idealised transfer calculations Semi-analytical modeling Numerical experiments

semi-analytical modeling including Ly α RT

Garel+2012 z=3.1 z=3.7 modeling high-z LAEs (Mpc⁻³) 10 a long-time effort dN/dlogL_{Lya} 10 Ledelliou+2006, Kobayashi+07-10, Dayal+08-09-11 107 • new coupling Ly α RT results 10 with SAM z=4.5 z = 4.9(Mpc⁻³) 10 Forrero-romero+11-12, Garel+12, Orsi+12 10 4/dlogL_{Lya} Statistical approach 10 107

41.0 41.5

logLive (erg.s=1)

42.0 42.5 43.0 43.5 41.0 41.5 42.0 42.5 43.0 43.5

logLive (erg.s=1)

Idealised transfer calculations Semi-analytical modeling Numerical experiments

semi-analytical modeling including Ly α RT

Garel+2012

12760

6380

Idealised transfer calculations Semi-analytical modeling Numerical experiments

semi-analytical modeling including Ly α RT

Garel+2012

log(f_

Idealised transfer calculations Semi-analytical modeling Numerical experiments

Observational Constraints

- Lyα emission from unresolved sources : LAEs /LBGs
- Lyα diffuse emission from spacially resolved sources

Lylpha Radiation Transfer modeling

- Idealised transfer calculations
- Semi-analytical modeling
- Numerical experiments
 - Modelling Ly α emission from galaxies
 - Modelling the Ly α polarisation of blobs

3 Conclusions and perspectives

Idealised transfer calculations Semi-analytical modeling Numerical experiments

Hydrodynamical simulation of an idealised galaxy

Dubois & Teyssier 2008

hydrodynamics

- RAMSES Teyssier 2002
- AMR technics
- coupled ionising transfer

Rosdahl & Blaizot 2012

interfaced with McLya

Idealised transfer calculations Semi-analytical modeling Numerical experiments

Orientation effects on Ly α properties Verhamme+12

G2 face-on

Idealised transfer calculations Semi-analytical modeling Numerical experiments

Orientation effects on Ly α properties

Idealised transfer calculations Semi-analytical modeling Numerical experiments

Orientation effects on Ly α properties

Idealised transfer calculations Semi-analytical modeling Numerical experiments

Orientation effects on Ly α properties

 $Ly\alpha$ Radiation Transfer modeling Conclusions and perspectives Idealised transfer calculations Semi-analytical modeling Numerical experiments

Simulations of Lya-blobs Rosdahl& Blaizot, 2012

3.00

0

 $Ly\alpha$ Radiation Transfer modeling Conclusions and perspectives Idealised transfer calculations Semi-analytical modeling Numerical experiments

Ly α polarisation Dijkstra+08, Trebitsch+13 et al in prep

Hayes+11

Trebitsch+13

ICRR, Tokyo

$Ly\alpha$ Radiation Transfer

Idealised transfer calculations Semi-analytical modeling Numerical experiments

Is Ly α polarisation powered by central source? Or in situ emission?

source = stars only

source = gas + stars

Trebitsch, Blaizot, Verhamme & Rosdahl 2013, submitted

Conclusions

Ly α radiation transfer studies help understanding/interpreting...

- Lyα spectral shapes of unresolved sources, to derive velocity fields, column densities, dust contents
- orientation effects on the Ly α properties of isolated disks
- or the mecanisms powering Lyα-blobs

Further prospects

- check the universality of our conclusions about blobs (only 1 obs and 1 sim !),
- and orientation in cosmological context,
- work on the impact of different sub-grid recipes used in the hydrodynamical simulations (star formation, SN feedback,etc...)
- work on spatially resolved Ly α properties of galaxies