

NuTel, Ashra-1, and NTA

George W.S. Hou (侯維恕) National Taiwan University

November 9, 2012, ICRR Seminar @ Kashiwa

NuTel, Ashra-1, and NTA

George W.S. Hou (NTU)

ICRR Seminar, November 9, 2012 1

Introduction / Earth-Skimming Method 6 NuTel and Ashra-1 23 + 14 13 Neutrino Telescope Array (NTA) 8 IV. **Conclusion and Discussion**

Cosmic Rays and Neutrinos

Cosmic Ray Spectrum

Window of Opportunity

Earth Skimming

Earth Skimming + Mountain Penetrating Cherenkov vs. fluorescence Cross SectionTelescope τ $\sim E^{1.4}$

> τ appearance experiment!

Sensitive to v_{τ} v_{e} : electron energy mostly absorbed in mountain v_{μ} : no extensive air shower

1/26/2010

What I learned 8/2001Vannucci Visit to NTU

- Earth Center Opaque for $E > 10^{14} \text{ eV }$
- Mountain-Valley v_{τ} Detection Concept

I asked whether he already had funding ... after - checking literature (e.g. Fargion)
- passing it thru NTUHEP PIs
I hired Alfred Huang in Fall (start simulations) (had to convince him ...)

Hawaii Site also came out from Vannucci visit ...

from Colloquium 3/2004 @ KIAS

Hawaii Big Island as Site: happened as gotcha

GWS Hou & MA Huang, astro-ph/0204145 P Yeh et al., MPLA 19 (2004) 1117 [CosPA 2003 WS]

from Colloquium 3/2004 @ KIAS

Three simulation stages

1

2

3

- 1. Mountain simulation: $v_{\tau} \rightarrow \tau$
 - v+N cross-section
 - inelasticity
 - energy loss of tau
- 2. Air shower simulation:
 - $\tau \rightarrow$ Cherenkov photons
 - $-\tau$ decay mode
 - CORSIKA detailed air shower simulation vs. fast simulation
- 3. Detector performance simulation
 - light propagation + Q.E.
 - pixelization for triggers
 - reconstruction

$v_{\tau} \rightarrow \tau$ inside mountain

- SM CC v+N cross-section
- Inelasticity & energy loss calculated by G.L. Lin, J.J. Tseng, T.W. Yeh, F.F. Lee of NCTU
- Range (distance when survival prob = e^{-1}) calculated by M.A. Huang

1/26/2010

<u>Tau flux</u>

- Tau flux:
 - Fast simulation: single interaction inside target
 - Full transport eq.: Consider multiple interactions $v_{\tau} \rightarrow \tau \rightarrow v_{\tau} \rightarrow \tau \dots$
- Conversion efficiency:
 - optimal thickness ~ several times of λ_{τ}
 - Energy loss decrease conversion efficiency

1/26/2010

Lateral profile of Cherenkov photons for horizontal shower (CORSIKA)

Similar profile for showers produced by e⁻ and π⁻
Cherenkov ring distance ~ (L-R_{max})×Tan θ_c
Outside ring, photon density ~ exponential decay
Detector can trigger far away from Cherenkov ring

1/26/2010

Photons numbers vs opening angle

- 1 PeV shower
 Shower core to detector plane
 30 km away
- Serious drop w/ attenuation

Opening angle (radian)

The Signal and Background Pattern

Cherenkov: ns pulse, angular span ~ 1.5 degrees Night Sky Background (mean)

Measured at Lulin observatory: 2.0 x10³ ph/ns/m²/sr

A magnitude 0 star gives 7.6 ph/m²/ns in (290,390) nm Cosmic Ray background very small Cluster-based trigger algorithm

Trigger Configuration

- Single Pixel Trigger: One pixel pass energy threshold H
- Duo Trigger: Two neighbouring pixels pass threshold H
 H
 H
- H-L Trigger: Two neighbouring pixels with one passes high threshold H
 H
 L
 and the other one passes low threshold L
 - Sum Trigger: 1. (3x3) trigger cell
 - n1 n2 n3 n8 H n4 n7 n6 n5

۲

Central pixel pass high threshold H
 Neighbour Npe Sum pass threshold A=n1+n2+...+n8

Night Sky Background:

• Npe Follows Poisson distribution: $Prob(n;\mu) = e^{-\mu} \mu^n/n!$,

 $\mu = \langle Npe \rangle \Phi t_g A FOV \epsilon_A \epsilon_q$,

 $\Phi = 200/ns/m^2/sr A = 1m^2 FOV = 0.5^{\circ}x0.5^{\circ}\epsilon_A = 0.5 \epsilon_q = 0.2$

 $\mu = 0.039 \text{ tg} = 25 \text{ ns}$; $\mu = 0.076 \text{ tg} = 50 \text{ ns}$

Range < 0.5 km: Majority of photon arrives within 25 ne

Trigger Efficiency for Electron Shower

Sum Trigger gives largest range 1.1 km for $\varepsilon_{trig} = 90\%$ Sum 2 trigger similar Other three triggers Similar to each other Conservative estimate:

200 γ needed

1/26/2010

George W.S. Hou (NTU)

Possibility for Reconstruction

- Angular Error within 1°
- Energy Error ~ 40%
- Reconstruction Efficiency > 90% if triggered

Sensitivity

- Defined as reachable upper limit of flux
- Assume $F(En) = F0 En^{-2}$
- Assume no signal in 2 years of observation
- Feldman-Cousin method for upper limits: 2.44 signal events
- Theo1: ~ 0.5 events/year

diffuse

1/26/2010

Demands of Optical system

Aperture~1m²

Photo sensor: 8 x 8 MAPMTs with 512 pixels

FOV: 16° horizontally 8° vertically

- Smaller image size is better.
- Smaller spot size is better.

• Wavelength: UV region, because it has more Cherenkov light as $1/\lambda^2$.

1/26/2010

Fresnel lens system not good enough

- The spot all isn't small, ~ 5mm. This is Chromatic issue.
 Spot with multi-wavelength is 2~3 times spot with single wavelength.
- The main way to lower the chromatic aberration is to use different material. However there are very few UV transparent material.
- Cytop is the best to eliminate dispersion (high Abbe no.), also high T(%) its spot size ~3mm, but it is expensive and lens will become fatter due to low index.

	Cytop	PMMA
Refraction index (n _d)	1.34	1.49
Abbe's number	90	55

1/26/2010

 To sum up, all spot size are less than the channel size of MAPMTs, it meets the threshold but not good enough. Any possible errors can make spots larger. So we changed to other design.

Electronics Device of NuTel (schematic)

Schematics of electronics

Schematics of electronics

Pre-amp. linearity

- Use attenuation to send decreasing pulses in height.
- Intercept with y axis is 1.025mV.

- Every step taking 96 ightarrowevents. Take peak clock value (usually 5th clock). Calculate every step's mean and rms.
- Error = rms/square(N) \bullet
- Use first order fn (line) to igodolfit.
- intercept with y-axis is ightarrowpedestal.

tau1 and tau2 over 512 channels

DAQ Test

 Event lost rate = total lost event / (50000+total lost event)

1/2004 up Mauna Loa

NuTel, Ashra-1, and NTA

George W.S. Hou (NTU)

ICRR Seminar, November 9, 2012 30

NuTel

- NuTel is the first experiment dedicated to earth skimming for τ appearance
- PeV cosmic v_{τ} rate is ~ 0.5 event/year
- First set of two telescopes ready
- VHECR observation in Taiwan: prototype deployment in 2009 indicates high light background at Nei-Fong
- But it got cut out in <u>CosPA II</u> in Spring 2004 ... and we could not restore it, after several tries ... so I continued it on a shoestring ...

Schmidt Mirror System

Aspherical Corrector Lens mainly eliminate spherical aberration.

1/26/2010

School @ NTU 32

Measurement of the Aspherical Lens at KEK

An image of a blue laser through the lens is measured on the screen.
Compare with design curve

Foucault test at KEK

1/26/2010

George W.S. Hou (NTU)

APCosPA School @ NTU 34

Spot size measurement

Mei-Fong site location

First NuTel Field Test at Mei-Fong 7/15-7/27

George W.S. Hou (NTU)

1/26/2010

Set-up of Observational Tent

George W.S. Hou (NTU)

Image around the focal plane

Waiting for sunrise before leaving

Photon Flux Calculation

$$\phi_{photon} = \frac{N_{P.E.}}{t} \times \frac{1}{E_{MAPMT}} \times \frac{1}{E_{opt}} \times \frac{1}{T_{BG3}} \times \frac{1}{T_{ND}} \times \frac{1}{A_{opt}} \times \frac{1}{\Omega_{pixel}}$$

- Φ_{photon} : photon flux
- N_{P.E.}: number of photoelectron
- t : time of measurement (sec)
- T_{BG3}: transmittance of BG3, about 80%.
- T_{ND}: transmittance of ND filters
- A_{opt}: optical receive area, about $0.56^2\pi$ (m²⁾
- Ω_{pixel} : solid angle of each pixel, about $(0.5^{\circ})^2$

1/26/2010

Calibration of MAPMT gain

We use purple-UV led to shine on MAPMT in black box.

And we use a photo-diode to check the brightness distribution in MAPMT front window plane.

1/26/2010

Calibration of MAPMT gain

We use purple-UV led to shine on MAPMT in black

Left graph shows input charge histogram.

The fitting results shows mean # of photoelectron and

$$h(t) = A \times \frac{\mu^N \times e^{-\mu}}{N!} = A \times \frac{\mu^{\frac{n}{g}} \times e^{-\mu}}{\Gamma(\frac{q}{g}+1)}$$

q is measured charge(mV) for each event g is gain(mV/p.e.), denoted by P1 μ is mean number of photoelectrons, denoted by P2

A is a scaled factor (probability \rightarrow entries) , denoted by P3

Noisy environment?

NuTel

- NuTel is the first experiment dedicated to earth skimming for τ appearance
- PeV cosmic v_{τ} rate is ~0.5 event/year
- First set of two telescopes ready
- VHECR observation in Taiwan: prototype deployment in 2009 indicates high light background at Mei-Fong
- We learned challenge of mountain operation
 → Tried pair up with <u>CRTNT</u> ... they evolved ...

NuTel

- NuTel is the first experiment dedicated to earth skimming for τ appearance
- PeV cosmic v_{τ} rate is ~ 0.5 event/year
- First set of two telescopes ready
- VHECR observation in Taiwan: prototype deployment in 2009 indicates high light background at Mei-Fong
- We learned challenge of mountain operation
 Tried pair up with CRTNT ... they evolved ...
- Pair up with Ashra-1 (M.Sasaki) at ICRR → NTA

Ashra-1

• Ashra-1 succeeded in demonstrating powerfulness of Earth-Skimming for τ appearance.

Total Resolution: ~3 arcmin image in 42 deg FOV

Can Cover Mauna Kea Surface at 35 km Distant

[Y.Asaoka, M.Sasaki NIM, A647:34-38,2011]

NuTel, Ashra-1, and NTA

George W.S. Hou (NTU)

NuTel, Ashra-1, and NTA

George W.S. Hou (NTU)

Ashra Observational Site: Mauna Loa

3,300 m a.s.l. 35 km from MK 77% mono. 27% stereo. 2~3 arcmin image

Nice Coverage and Precision as Particle Monitor

Advantages of ES Tau Neutrino Detection

Possible Point v < 0.1 deg

Atm-v & CR BG Free

Image A Fine Tau Shower → Open up Multi-Particle Astronomy

NuTel, Ashra-1, and NTA

George W.S. Hou (NTU)

GRB081209A

Swift GRB Alert during Commissioning

First Check for PeV-EeV Tau Neutrino from a GRB

NuTel, Ashra-1, and NTA

George W.S. Hou (NTU)

NuTel, Ashra-1, and NTA

Ashra-1 R0000941/E115513 Triggered Real Shower Event vs MC

Ashra-1 R0000941/E115513 Triggered Real Shower Event vs MC

R0001087/E112357 120620 UT 13:03:32.606158

MC reproduce real event

ICRR Seminar, November 9, 2012 56

George W.S. Hou (NTU)

Observed CR Spectrum

Validation of Sensitivity and Reconstruction

Some Hint for Composition

Even Commisioning 100x Better than Rice

Started Obs03 Runs Approaching to IceCube Area

Ashra-1

GRB Neutrino Search Comparison

0. Auger, PRD 79 (2009) 102001

Complement IceCube:

- Methodology
- Energy
- <u>Self-trigger for Tau Neutrino</u>
- 1. IceCube, Nature 484 (2012) 351
- IC40+IC59 stacked 117+181GRBs
- Very strong bias for time window (28s) around Satellite Triggers to suppress huge BG
- 2. Murase et al. ApJ 651 (2006) L5
- Nearby Low luminosity (LL) GRB (ex. GRB 060218/SN 2006aj) dominate total neutrino fluxes at Earth
- X or γ Satellites cannot detect
- 3. Hummer et al. PRL 108 (2012) 231101
- Recalculated neutrino flux => Ashra Energy Region more important

Plausible: Ashra's Unbiased Search with BG-free

NuTel, Ashra-1, and NTAGeorge W.S. Hou (NTU)ICRR Seminar, November 9, 201259

Neutrino Telescope Array (NTA)

Conceptual Layout <u>Central Site</u> (Site-0) <u>Peripheral Sites</u> (Site-1, 2, 3) 25 km Triangle Grids

⇒ Huge Target Mass (>100 km³-weq)
Huge Atm. Mass (above area >1000 km²)
3 Mountains Shield BG

Compound Eyes watching the air from sides and beneath The air in good weather condition between 3 mountains Cherenkov & fluorescence images of tau appearance showers

NuTel, Ashra-1, and NTA

George W.S. Hou (NTU)

Earth-Skimming τ Shower Imaging Method

Neutrino Telescope Array (NTA)

NTA Light Collector (NTA-LC) mount baseline design (tentative)

Design Review ~ 1 yr in NTA collaboration ⇒ Technical Proposal

<u>Light Collector (LC)</u> Schmidt Optics with ϕ 1.5m pupil FOV 28° = focal sphere ϕ 50cm

 $\frac{\text{Detector Unit (DU)}}{4 \text{ LCs watching same FOV}}$ Superimposed 4 images $\Rightarrow \text{ Effective pupil size =}$ $\phi 3 \text{m}$

⇒ Concept of NTA Light Collector: Ashra-1 x 1.5 scaled-up + same trigger & readout

NuTel, Ashra-1, and NTA

George W.S. Hou (NTU)

NuTel, Ashra-1, and NTA

George W.S. Hou (NTU)

Acceptance with Water & Muon vs Air & Tau

NuTel, Ashra-1, and NTA

George W.S. Hou (NTU)

GRB Neutrino Search Comparison

0. Auger, PRD 79 (2009) 102001

Complement IceCube:

- Methodology
- Energy
- <u>Self-trigger for Tau Neutrino</u>
- 1. IceCube, Nature 484 (2012) 351
- IC40+IC59 stacked 117+181GRBs
- Very strong bias for time window (28s) around Satellite Triggers to suppress huge BG
- 2. Murase et al. ApJ 651 (2006) L5
- Nearby Low luminosity (LL) GRB (ex. GRB 060218/SN 2006aj) dominate total neutrino fluxes at Earth
- X or γ Satellites cannot detect
- 3. Hummer et al. PRL 108 (2012) 231101
- Recalculated neutrino flux => Ashra Energy Region more important

NTA Survey Depth: z ~ 0.15 (2 Glyr) for GRBv flux (by Hummer et al.)

NuTel, Ashra-1, and NTA

George W.S. Hou (NTU)

Neutrino Telescope Array (NTA)

Diffuse v case: Duty 10% × solid angle ratio 0.5 \Rightarrow competitive w/ IceCube

NuTel, Ashra-1, and NTA

George W.S. Hou (NTU)

- Excellent detection sensitivity of Earth-Skimming (ES) τ Shower Imaging method in PeV-EeV region to search for v's from hadron acceleration in astronomical objects, with good pointing accuracy and negligible BG from CR and atm-v's.
- NuTel and Ashra-1 were developed to detect v_{τ} with the ES method. The optical/electronic systems of NuTel were designed, built and tested at 2100 m on Mei-Fong Mountain in Taiwan, and is ready for physics observation. Ashra-1 succeeded in the first search for PeV-EeV v_{τ} from GRBs with the best instantaneous sensitivity since 2008.
- New collaboration for next-gen. Neutrino Telescope Array (NTA) begin to form. The layout considers three site stations for 25 km-grid triangle and a single site station at the center with full-sky coverage, watching the total air mass surrounded by the 3 mountains on Hawaii Island. This configuration allows tremendous sensitivity (> 100 Gton weq.) and wide survey capability with Cherenkov-fluorescence observation for PeV-EeV v's in essentially background-free conditions.

NuTel, Ashra-1, and NTA

George W.S. Hou (NTU) ICRR Seminar, November 9, 2012 69

NuTel at NTU

Fix and let the main part of support easily leaving the floor to rotate vertically.

Gravity center, make rotation easier.

Trick of alignment of position & tilt: make incident and reflected light overlapped.

• Mei-Fong (2100 m)

• Lu-Lin Zan Chung (2700 m)

Visit Control Visit Control Visit Control Visit Control Visit Control Visit Control Visit Control

Site survey in summer 2008

• Kuan-young (3092 m)

Working in the observational Tent

Installation of light sensor/readout

73

Final adjustment of optics

Taking shifts for online monitoring

George W.S. Hou (NTU)

N.D. filter **Transmit rate**

By adding N.D. filter in front of window of MAPMT, we can decrease incident photons into MAPMT.

The N.D. filters are reflective type. The transmit rate verse wavelength show as left graphs.

George W.S. Hou (NTU)

Calibration of MAPMT gain

We use purple-UV led to shine on MAPMT in black box.

And left picture show the purple led and it shine on grid paper.

George W.S. Hou (NTU)

CC 相互作用ごとに非弾性度分エネルギー損失しながら、レプトン変換を繰り返す ⇒ 高いエネルギーの v_{τ} を低いエネルギーの v_{τ} に"変身"させて検出する。

- ⇒ 高いエネルギーの v_τ の地球による遮蔽を軽減できる。
- ⇒ 検出視野(俯角)を稼ぐことができる
- ⇒ NTAによる探査範囲が広がる

Tau Propagation Length in Rock (MC study)

NuTel, Ashra-1, and NTA

Forming International Collaboration

NuTel, Ashra-1, and NTA

George W.S. Hou (NTU) ICRR Seminar, November 9, 2012 81

地中におけるCC散乱長 (L_{cc}^ν) に相当する俯角 (-θ_{elev})

τシャワーの方向精度(検出方法起源)

• 伝播・反応過程での方向変化

Astropart. Phys. in press, arXiv:1202.5656

- 素粒子・宇宙線分野で広く用いられ定評ある シミュレーションプログラムにより評価

過程	評価方法	精度@PeV	注釈
v_{τ} 荷電相互作用	ΡΥΤΗΙΑ	< 0.3分角	Pt: W質量で制限
τ地中伝播	GEANT4 ALLM model	<1分角	輻射プロセス重要 光核反応のみALLM モデルで評価した
τ崩壊	TAUOLA	<1分角	Pt: τ質量で制限
空気シャワー	CORSIKA	0.1°	AS軸ずれ∝ E ^{-1/2}

PeV-EeV領域では、
τシャワーは
ν_τの方向を覚えている

- 到来方向決定精度 ⇒ 重要
 - 大天頂角宇宙線BG除去
 - 超高エネルギーニュートリノ源同定

• $\sigma = 0.16^{\circ}$

⇒ Cherenkov モノ観測でも 高精度方向決定が可能

$$L = \sum_{i} N_{\rm pe}^{i} \log(p_i).$$

E>PeV τ シャワー

の方向精度良好

(cf.)

宇宙線BG

- 支配的なバックグラウンド
 大天頂角からの宇宙線シャワー
- 期待されるBG量 (CORISKAにて推定)
 - Commissioning 観測
 - N_{BG} = 1.3x10⁻⁴ (197.1hr) ⇒ 無視可能
 - 本観測 (1LC)
 - 山際からの距離
 0.1°
 0.3°
 1.0°
 3.0°
 - 期待されるBG頻度 0.082/yr 0.55/yr 4.3/yr 39/yr