

Latest Results from Daya Bay and its Future Prospects

Yifang Wang Institute of High Energy Physics ICRR, Oct. 22, 2012

Daya Bay reactor neutrino experiment

- Next to the second largest reactor complex: 6 reactor cores operational, 17.4 GW_{th} in total
- Mountains near by, easy to construct a lab with enough overburden to shield cosmic-ray backgrounds

Direct Searches before Daya Bay

Double Chooz: 1.7 σ

 $\sin^2 2\theta_{13} = 0.086 \pm 0.041(\text{stat}) \pm 0.030(\text{sys})$

Reactor Experiment: comparing observed/expected neutrinos

Our design goal: a precision of ~ 0.4%

2012-10-22

Daya Bay Experiment: Layout

- Relative measurement to cancel Corr. Syst. Err.
 - ⇒ 2 near sites, 1 far site
- Multiple AD modules at each site to reduce Uncorr. Syst. Err.
 - ⇒ Far: 4 modules, near: 2 modules
 Cross check; Reduce errors by 1/√N
- Multiple muon detectors to reduce veto eff. uncertainties
 - ➡ Water Cherenkov: 2 layers
- \Rightarrow **RPC:** 4 layers at the top + telescopes 2012-10-22

The Daya Bay Collaboration

Political Map of the World, June 1999

Europe (2) JINR, Dubna, Russia Charles University, Czech Republic

North America (16)

BNL, Caltech, LBNL, Iowa State Univ., Illinois Inst. Tech., Princeton, RPI, UC-Berkeley, UCLA, Univ. of Cincinnati, Univ. of Houston, Univ. of Wisconsin, William & Mary, Virginia Tech., Univ. of Illinois-Urbana-Champaign, Siena

~250 Collaborators

Asia (20)

IHEP, Beijing Normal Univ., Chengdu Univ. of Sci. and Tech., CGNPG, CIAE, Dongguan Polytech. Univ., Nanjing Univ., Nankai Univ., NCEPU, Shandong Univ., Shanghai Jiao tong Univ., Shenzhen Univ.,

Tsinghua Univ., USTC, Zhongshan Univ., Univ. of Hong Kong, Chinese Univ. of Hong Kong, National Taiwan Univ., National Chiao Tung Univ., National United Univ.

Underground Labs

•Tunnel: ~ 3100m •3 Exp. hall •1 hall for LS •1 hall for water

	Overburden (MWE)	$\frac{\mathbf{R}_{\mu}}{(\mathbf{Hz}/\mathbf{m}^{2})}$	E _μ (GeV)	D1,2 (m)	L1,2 (m)	L3,4 (m)
EH1	250	1.27	57	364	857	1307
EH2	265	0.95	58	1348	480	528
EH3	860	0.056	137	1912	1540	1548

2012-10-22

Tunnel and Underground Lab

A total of ~ 3000 blasting right next reactors. No one exceeds safety limit set by National Nuclear Safety Agency (0.007g)

Anti-neutrino Detector (AD)

Three zones modular structure:

 target: Gd-loaded scintillator
 γ-catcher: normal scintillator
 buffer shielding: oil

 192 8" PMTs/module
 Two optical reflectors at the top and the bottom, Photocathode coverage increased from 5.6% to 12%

į		$\left(\frac{7.5}{\sqrt{E_{rec}}(Me)}\right)$	+0.9)%			
-	Ge Be Be n H-capture		~ 163 PE/MeV		Target: 20 t, 1.6m	
		PMT	Coverage	pe yield	pe yield/Coverage	l I
	Daya Bay	192 8''	~6%	163 pe/MeV	1.77	
	RENO	354 10"	~15%	230 pe/MeV	1	l0 t
	Double Chooz	390 10"	~16%	200 pe/MeV	0.81	
2012-10-2	22 1 2 3	4 5 C E	Energy (MeV)			

AD assembly

Gd-loaded Liquid Scintillator

- Liquid production, QA, storage and filling at Hall 5
 - 185t Gd-LS, ~180t LS, ~320t oil
- LAB+Gd (TMHA)³+PPO+BisMSB
- **Stable over time**
 - Light yield: ~163 PE/MeV

Liquid hall: LS production and filling

UV-vis of 4-ton Dry Run Gd-LS

11

Automatic Calibration System

- Three Z axis:
 - ⇒ One at the center
 - ✓ For time evolution, energy scale, nonlinearity...
 - \Rightarrow One at the edge
 - ✓ For efficiency, space response
 - \Rightarrow One in the γ -catcher
 - ✓ For efficiency, space response
 - **3 sources for each z axis:**
 - ⇒ LED
 - ✓ for T₀, gain and relative QE
 - \Rightarrow ⁶⁸Ge (2×0.511 MeV γ 's)
 - ✓ for positron threshold & non-linearity...
 - \Rightarrow ²⁴¹Am-¹³C + ⁶⁰Co (1.17+1.33 MeV γ 's)
 - ✓ For neutron capture time, ...
 - ✓ For energy scale, response function, ...
- Once every week:

⇒ 3 axis, 5 points in Z, 3 sources 2012-10-22

Muon Veto Detector

- Two active cosmic-muon veto's
 - Water Cerenkov: Eff.>97%
 - > RPC Muon tracker: Eff. > 88%

RPCs

- ➡ 4 layers/module
- ⇒ 54 modules/near hall, 81 modules/far hall
- ⇒ 2 telescope modules/hall
- Water Cerenkov detector
 - Two layers, separated by Tyvek/PE/Tyvek film
 - 288 8" PMTs for near halls; 384
 8" PMTs for the far hall

Water processing

- ➡ High purity de-ionized water in pools also for shielding
- ⇒ First stage water production in hall 4
- ⇒ Local water re-circulation & purification

Water Cerenkov detector installation

Hall 1(two ADs) Started the Operation on Aug. 15, 2011

One AD insalled in Hall 2 Physics Data Taking Started on Nov.5, 2011

2012-1

Three ADs insalled in Hall 3 Physics Data Taking Started on Dec.24, 2011

7

Data Set

- A→Two Detector Comparison: Sep. 23, 2011 – Dec. 23, 2011
- ▶→First Oscillation Result:
 Dec. 24, 2011 Feb. 17, 2012
- C→Updated analysis:
 Dec. 24, 2011 May 11, 2012
- **DAQ eff.** ~ 97%
- Eff. for physics: ~ 89%

First results announced on Mar,.8, 2012: F.P. An et al., NIM. A 685(2012)78 F.P. An et al., Phys. Rev. Lett. 108, (2012) 171803

Flashers: Imperfect PMTs

- ~ 5% of PMT, 5% of event
- **Rejection: pattern of fired PMTs**
 - Topology: a hot PMT + near-by PMTs and opposite PMTs

Inefficiency to neutrinos: 0.024% ± 0.006%(stat) Contamination: < 0.01%

MaxQ = maxQ/sumQ

Event Reconstruction: Energy Calibration

Event Signature and Backgrounds

- Signature: $\overline{v}_e + p \rightarrow e^+ + n$
 - \Rightarrow **Prompt:** e⁺, 1-10 MeV,
 - ⇒ Delayed: n, 2.2 MeV@H, 8 MeV @ Gd
 - ⇒ Capture time: 28 µs in 0.1% Gd-LS

Backgrounds

- \Rightarrow Uncorrelated: random coincidence of $\gamma\gamma$, γ n or nn
 - γ from U/Th/K/Rn/Co... in LS, SS, PMT, Rock, ...
 - ✓ n from α -n, μ -capture, μ -spallation in LS, water & rock
- ⇒ Correlated:
 - ✓ Fast neutrons: prompt—n scattering, delayed —n capture
 - « ⁸He/⁹Li: prompt —β decay, delayed —n capture
 - Am-C source: prompt —γ rays, delayed —n capture
 - ✓ α-n: ${}^{13}C(α,n){}^{16}O$

Neutrino Event Selection

Pre-selection

- ⇒ Reject Flashers
- ⇒ Reject Triggers within (-2 μs, 200 μs) to a tagged water pool muon
- Neutrino event selection
 - ⇒ Multiplicity cut
 - \checkmark Prompt-delayed pairs within a time interval of 200 µs
 - ✓ No triggers(E > 0.7 MeV) before the prompt signal and after the delayed signal by 200 µs
 - ⇒ Muon veto
 - ✓ *Is* after an AD shower muon
 - ✓ *1ms* after an AD muon
 - ✓ *0.6ms* after an WP muon
 - \Rightarrow 0.7MeV < E_{prompt} < 12.0MeV
 - \Rightarrow 6.0MeV < E_{delayed} < 12.0MeV
 - $\Rightarrow \quad 1\mu s < \Delta t_{e^+-n} < 200\mu s$

22

Selected Signal Events: Good Agreement with MC

23

Accidental Backgrounds

Fast Neutrons

- **Estimate from events with E >12 MeV**
 - ⇒ Difference of the fitting function gives systematic uncertainties
- Cross check: Sum up all neutrons from water pools & rock
 - ➡ Water pool:
 - ✓ Measure neutrons from tagged muons and compare with MC
 - ✓ Untagged neutrons estimated by using water pool inefficiencies
 - ➡ Rock: Estimate based on MC simulation

<u>Backgrounds –⁸He/⁹Li</u>

Cosmic μ **produced** ⁹**Li**/⁸**He** in **LS** $\Rightarrow \beta$ -decay + neutron emitter $\Rightarrow \tau(^{8}\text{He}/^{9}\text{Li}) = 171.7\text{ms}/257.2\text{ms}$ $\Rightarrow ^{8}\text{He}/^{9}\text{Li}, \text{Br}(n) = 12\%/48\%, ^{9}\text{Li}$ dominant $\Rightarrow \text{Production rate follow } E_{\mu}^{0.74} \text{ power law}$ **Measurement:** $\Rightarrow \text{Time-since-last-muon fit}$ $f(t) = B/\lambda \cdot e^{-t/\lambda} + S/T \cdot e^{-t/T}$

- Improve the precision by reducing the muon rate:
 - ✓ Select only muons with an energy deposit
 >1.8MeV within a [10us, 200us] window
 - ✓ Issue: possible inefficiency of ⁹Li
- Results w/ and w/o the reduction is studied

$$\sigma_b = \frac{1}{N} \cdot \sqrt{(1 + \tau R_\mu)^2 - 1}$$

Measurement in EH1+EH2 & Prediction in EH3

- Measurement in EH1/EH2 with good precision, but EH3 suffers from poor statistics
- Results w/ and w/o the muon reduction consistent within 10%
- Correlated ⁹Li production (E_μ^{0.74} power law) allow us to further constraint ⁹Li yield in EH3
- Cross check: Energy spectrum consistent with expectation

²⁴¹Am-¹³C Backgrounds

Uncorrelated backgrounds:

$\mathbf{R} = 50 \text{ Hz} \times 200 \text{ } \mu \text{s} \times \mathbf{R}_{\text{n-like}} (\text{events/day/AD})$

- R_{n-like} Measured to be ~230/day/AD, in consistent with MC Simulation
- R is not a negligible amount, particularly at the far site $(B/S \sim 3.17\%)$
- Measured precisely together with all the other uncorrelated backgrounds

Correlated backgrounds:

- Neutron inelastic scattering with 56 Fe + neutron
- capture on ⁵⁷Fe Simulation shows that correlated background is (AD corresponding to a B/S ratio of 0.03% at near site, 0.3% at far site

Uncertainty: 100%

Backgrounds from ¹³C(α,n)¹⁶O

- Identify α sources:
 ²³⁸U, ²³²Th, ²²⁷Ac, ²¹⁰Po,...
- Determine α rate from cascade decays
- Calculate backgrounds from α rate + (α,n) cross sections

	Components	Total α rate	BG rate
Region A	Acc. Coincidence of ²¹⁰ Po & ²¹⁰ Po	²¹⁰ Po:	
Region B	Acc. Coincidence of ²¹⁰ Po & ⁴⁰ K	22Hz at EH1	0.06/day at EH1
Region C	Acc. Coincidence of ⁴⁰ K & ²¹⁰ Po	14Hz at EH2	0.04/day at EH2
Region D	Acc. Coincidence of ²⁰⁸ Tl & ²¹⁰ Po	SHZ at EH3	0.02/day at EH3
Region E	Cascade decay in ²²⁷ Ac chain	1.4 Bq	0.01/day
Region F	Cascade decay in ²³⁸ U chain	0.07Bq	0.001/day
Region G	Cascade decay in ²³² Th chain	1.2Bq	0.01/day

Uncertainty: 50%

Signal+Backgound Spectrum

Energy Cuts Efficiency and Systematics

31

Gd Capture Fraction: H/Gd and Systematics

- Uncertainty is large if takes simply the ratio of area
- ♦ Relative Gd content variation 0.1%
 → evaluated from neutron capture time
- Geometry effect on spill-in/out
 0.02% → relative differences in acrylic thickness, acrylic density and liquid density are modeled in MC

Neutron capture time from Am-C

Predictions

- Baseline (3.5cm, ~0.002%)
- Target mass (3kg, 0.015%)
- Reactor neutrino flux

The Most Precise Neutrino Experiment

Detector						
	Efficiency	Correlated	Uncorrelated			
Target Protons		0.47%	0.03%			
Flasher cut	99.98%	0.01%	0.01%			
Delayed energy cut	90.9%	0.6%	0.12%			
Prompt energy cut	99.88%	0.10%	0.01%			
Multiplicity cut		0.02%	< 0.01%			
Capture time cut	98.6%	0.12%	0.01%			
Gd capture ratio	83.8%	0.8%	$<\!0.1\%$			
Spill-in	105.0%	Design: (0.1	8 - 0.38) %			
Livetime	100.0%	0.002%	< 0.01%			
Combined	78.8%	1.9%	0.2%			
	Rea	ctor				
Correlate	d	Uncorn	elated			
Energy/fission	0.2%	Power	0.5%			
$\overline{\nu}_{e}$ /fission	3%	Fission fraction	0.6%			
	Spent fuel 0.3%					
Combined	3%	Combined	0.8%			

Side-by-side Comparison

Expectation: R(AD1/AD2) = 0.982Measurement: $0.987 \pm 0.004(stat) \pm 0.003(syst)$

Daily Neutrino Rate

- Three halls taking data synchronously allows near-far cancellation of reactor related uncertainties
- Rate changes reflect the reactor on/off.

Predictions are absolute, multiplied by a normalization factor from the fitting

Electron Anti-neutrino Disappearence

<u>χ² Analysis</u>

Comparison with Other Experiments

- Double Chooz Exp. completed near far construction in 2011, full operation in 2013
 - \Rightarrow Results in June based on far-site data, significance = 3.1 σ
 - ⇒ Expected ultimate precision: ~15%
- RENO Exp. started operation in Aug. Their first paper on April 8 confirmed our results:
 - \Rightarrow Significance = 4.9 σ
 - \Rightarrow sin²2 θ_{13} = 0.113 ± 0.013(stat.) ± 0.019(syst.)
 - ⇒ Expected ultimate precision: ~10%
- T2K Exp. re-started operation at the end of last year:
 - \Rightarrow Results in June: Significance = 3.1 σ
 - ⇒ Expected ultimate precision: ~15%
- Daya Bay Exp. updated results in June:
 - Significance = 7.7σ
 - Expected ultimate precision: ~5%

Current status and future plan

- Summer maintenance completed
- Two new AD modules installed
- Data taking restated in Oct.
- Precision results in three years, $\Delta(\sin^2 2\theta_{13}) \sim 4\%$

Next Step: Daya Bay-II Experiment

- 20 kton LS detector
- **3% energy resolution**
- **Rich physics possibilities**
 - ⇒ Mass hierarchy
 - ⇒ Precision measurement of 4 mixing parameters
 - ⇒ Supernovae neutrinos
 - ⇒ Geoneutrinos
 - ⇒ Sterile neutrinos
 - ⇒ Atmospheric neutrinos
 - ⇒ Exotic searches

Talk by Y.F. Wang at ICFA seminar 2008, Neutel 2011; by J. Cao at Nutel 2009, NuTurn 2012; Paper by L. Zhan, Y.F. Wang, J. Cao, L.J. Wen, PRD78:111103,2008; PRD79:073007,2009

Easier now with a large θ₁₃

Precision Measurements

Fundamental to the Standard Model and beyond
 Probing the unitarity of U_{PMNS} to ~1% level !

	Current	Daya Bay II
Δm_{12}^2	3%	0.26%
Δm_{23}^2	5%	0.30%
$\sin^2\theta_{12}$	6%	0.63%
$\sin^2\theta_{23}$	20%	N/A
$\sin^2\theta_{13}$	14% → 4%	~ 15%

Supernova neutrinos

Less than 20 events observed so far

Assumptions:

- ⇒ Distance: 10 kpc (our Galaxy center)
- ⇒ Energy: 3×10⁵³ erg
- \Rightarrow L_v the same for all types
- ⇒ Tem. & energy

 $T(v_e) = 3.5 \text{ MeV}, \langle E(v_e) \rangle = 11 \text{ MeV}$ $T(v_e) = 5 \text{ MeV}, \langle E(v_e) \rangle = 16 \text{ MeV}$

- Many types of events: $T(v_x) = 8$ MeV, $\langle E(v_x) \rangle = 25$ MeV
 - \Rightarrow $v_e + p \rightarrow n + e^+, \sim 3000$ correlated events
 - \Rightarrow $\overline{v_e} + {}^{12}C \rightarrow {}^{12}B^* + e^+, \sim 10\text{-}100 \text{ correlated events}$
 - \Rightarrow v_e + ¹²C \rightarrow ¹²N* + e⁻, ~ 10-100 correlated events
 - \Rightarrow $v_x + {}^{12}C \rightarrow v_x + {}^{12}C^*$, ~ 600 correlated events
 - $\Rightarrow \quad \mathbf{v}_{\mathbf{x}} + \mathbf{p} \rightarrow \mathbf{v}_{\mathbf{x}} + \mathbf{p}, \text{ single events}$
 - $\Rightarrow v_e + e^- \rightarrow v_e + e^-, \text{ single events}$
 - $\Rightarrow v_x + e^- \rightarrow v_x + e^-$, single events

Energy spectra & fluxes of all types of neutrinos

Water Cerenkov detectors can not see these correlated events

<u>Geoneutrinos</u>

Current results:

- ➡ KamLAND: 40.0±10.5±11.5 TNU
- $\Rightarrow \quad \begin{array}{l} \text{Borexino:} \\ 64 \pm 25 \pm 2 \text{ TNU} \end{array}$
- Desire to reach an error of 3 TNU: statistically dominant
- Daya Bay II: >×10 statistics, but difficult on systematics
- Background to reactor neutrinos

The reactors and possible site

	Daya Bay	Huizhou	Lufeng	Yangjiang	Taishan
Status	Operational	Planned	Planned	Under construction	Under construction
Power	17.4 GW	17.4 GW	17.4 GW	17.4 GW	18.4 GW

Detector Concept

Technical Challenges

Requirements:

- ⇒ Large detector: >10 kt LS
- ⇒ Energy resolution: 3%/√E → 1200 p.e./MeV

Ongoing R&D:

- ➡ Low cost, high QE "PMT"
- → Highly transparent LS: 15m → 30m

	KamLAND	Daya Bay II
LS mass	~1 kt	20 kt
Energy Resolution	<mark>6%/</mark> √E	<mark>3%/</mark> √E
Light yield	250 p.e./MeV	1200 p.e./MeV

More photons, how and how many ?

•	Highly transparent LS:	
	$\Rightarrow \text{Attenuation length/R: } 15\text{m}/16\text{m} \rightarrow 30\text{m}/35\text{m}$	×0.9
•	High light yield LS:	
	⇒ KamLAND: 1.5g/l PPO → 5g/l PPO	
	Light Yield: 30%→ 45%;	× 1.5
•	Photocathode coverage :	
	$\Rightarrow \text{ KamLAND: } 34\% \rightarrow \sim 80\%$	× 2.3
•	High QE "PMT":	
	⇒ 20" SBA PMT QE: 20% → 35%	× 1.7
	or New PMT QE ~ 40%	imes 2
	5.3 - 7.0	→ (2.7 – 2.4)% /√E

With 1% constant term & 1% neutron recoil uncertainty, we are still OK

A new type of PMT: higher photon detection eff.

8" MCP-PMT

- **Top: transmitted photocathode**
- Bottom: reflective photocathode additional QE: ~ 80%*40%
- MCP to replace Dynodes no blocking of photons
 - ~ ×2 improvement

Prototypes

How to get transparent LS?

- **Improve raw materials (using Dodecane instead of MO for** LAB production)
- **Improve the production process**
- **Purification**

 Electron anti-neutrino disappearance is observed at Daya Bay,

 $R = 0.944 \pm 0.007 \text{ (stat)} \pm 0.003 \text{ (syst)},$

together with a spectral distortion

A new type of neutrino oscillation is thus discovered

Updated Results on June. 4, 2012:

 $Sin^{2}2\theta_{13}=0.089\pm 0.010 \text{ (stat)}\pm 0.005 \text{ (syst)}$

 χ^2 /NDF = 3.4/4, 7.7 σ for non-zero θ_{13}

First Results on Mar. 8, 2012:

 $Sin^2 2\theta_{13} = 0.092 \pm 0.016(stat) \pm 0.005(syst)$

 $\chi^{2}/\text{NDF} = 4.26/4$, 5.2 σ for non-zero θ_{13}

Future of reactor neutrinos: Mass hierarchy

Single Rate: Understood

- Design: ~50Hz above 1 MeV
- Data: ~60Hz above
 0.7 MeV, ~40Hz
 above 1 MeV
- From sample purity and MC simulation, each of the following component contribute to singles
 - → ~ 5 Hz from SSV
 - → ~ 10 Hz from LS
 - → ~ 25 Hz from PMT
 - → ~ 5 Hz from rock
- All numbers are consistent

Backgrounds & uncertainties

	Daya Bay		Reno		Double Chooz
	Near	Far	Near	Far	Far
Accidentals (B/S)	1.4%	4.0%	0.56%	0.93%	0.6%
Uncertainty(ΔB/B)	1.0%	1.4%	1.4%	4.4%	0.8%
Fast neutrons(B/S)	0.1%	0.06%	0.64%	1.3%	1.6%
Uncertainty(ΔB/B)	31%	40%	2.6%	6.2%	30%
⁸ He/ ⁹ Li (B/S)	0.4%	0.3%	1.6%	3.6%	2.8%
Uncertainty (ΔB/B)	52%	55%	48%	29%	50%
α -n(B/S)	0.01%	0.05%	-	<u> </u>	-
Uncertainty(ΔB/B)	50%	50%	-	-	-
Am-C(B/S)	0.03%	0.3%	-	-	-
Uncertainty (ΔB/B)	100%	100%	-	-	-
Total backgrounds(B/S)	1.9%	4.7%	2.8%	5.8%	5.0%
Total Uncertainties $(\Delta(B/S))$	0.2%	0.35%	0.8%	1.1%	1.5%

Efficiencies and Systematics

	Daya Bay		Reno		Double Chooz
	Corr.	Uncorr.	Corr.	Uncorr.	Corr/Uncorr.
Target proton	0.47%	0.03%	0.5%	0.1%)	0.3%
Flasher cut	0.01%	0.01%	0.1%	0.01%	-
Delayed energy cut	0.6%	0.12%	0.5%	0.1%	0.7%
Prompt energy cut	0.1%	0.01%	0.1%	0.01%	-
Energy response	-	-	-	-	0.3%
Trigger efficiency					<0.1%
Multiplicity cut	0.02%	<0.01%	0.06%	0.04%	-
Capture time cut	0.12%	0.01%	0.5%	0.01%	0.5%
Gd capture ratio	0.8%	<0.1%	0.7%	0.1%	0.3%
Spill-in	1.5%	0.02%	1.0%	0.03%	0.3%
livetime	0.002%	<0.01%			-
Muon veto cut	-	-	0.06%	0.04%	-
Total	1.9%	0.2%	1.5%	0.2%	1.0%

Reactor flux estimate

	Daya	Daya Bay		eno	Double Chooz
	Corr.	Uncorr.	Corr.	Uncorr.	Corr./Uncorr.
Thermal power		0.5%		0.5%	0.5%
Fission fraction/Fuel composition		0.6%		0.7%	0.9%
Fission cross section /Bugey 4 measurement			1.9%		1.4%
Reference spectra	3%		0.5%		0.5%
IBD cross section			0.2%		0.2%
Energy per fission	0.2%		0.2%		0.2%
Baseline	0.02%		-		0.2%
Spent fuel		0.3%			
Total	3%	0.8%	2.0%	0.9%	1.8%