Searches for ultra-high energy cosmic neutrinos with the IceCube neutrino detector

石原安野(Aya Ishihara) aya@hepburn.s.chiba-u.ac.jp 学術振興会特別研究員 / 千葉大学

Aya Ishihara 2012/8/30 宇宙線研

Contents

- Introduction
- The IceCube detector
- Description of the ultra-high energy neutrino analysis
- Results from the analysis
- Ongoing improvements

Ultra-high Energy Neutrinos: *PeV and above*

- Energies above dominant atmospheric neutrinos
- Cosmic frontier PeV gamma-ray horizon limited to a few tens of kpc (our galaxy radius)
- Cosmogenic neutrino production is a 'guaranteed' v source

The First Piece of the Puzzle - Cosmic-rays

Neutrinos in the Astronomical Objects

high energy cosmic-ray sources, e.g. AGN, GRB...

Idea of the cosmic neutrino is simple and attractive

Investigate source candidates such as AGNs/GRBs distribute larger distance than attenuation length of photon with another undeflected and less absorbed particles!!

The highest energy neutrinos

cosmogenic neutrinos induced by the interactions of cosmic-ray and CMB photons

Off-Source (<50Mpc) astrophysical neutrino production via

GZK (Greisen-Zatsepin-Kuzmin) mechanism

The main energy range: $E_v \sim 10^{8-10}$ GeV $p\gamma_{27K} \rightarrow \pi^+ + X \rightarrow \mu^+ + \nu \rightarrow e^+ + \nu's$ **Carries important physics** Location of the cosmic-ray sources Cosmological evolution of the Various cosmic-ray sources **GZK**v Cosmic-ray spectra at sources models The highest energy of the cosmc-rays Composition of the cosmicrays Particle physics beyond the energies accelerators can reach

Question is why we have not seen them yet?

High energy neutrino telescopes in the world

The IceCube Collaboration

http://icecube.wisc.edu

36 institutions, ~270 members

Canada

University of Alberta

US

Bartol Research Institute, Delaware Pennsylvania State University University of California - Berkeley University of California - Irvine Clark-Atlanta University University of Maryland University of Wisconsin - Madison University of Wisconsin - River Falls Lawrence Berkeley National Lab. University of Kansas Southern University, Baton Rouge University of Alaska, Anchorage University of Alabama, Tuscaloosa Georgia Tech Ohio State University

Barbados

University of West Indies

Sweden Uppsala Universitet Stockholms Universitet

UK Oxford University DESY-Zeuthen Universität Dortmund Universität Wuppertal Humboldt-Universität zu Berlin MPI Heidelberg RWTH Aachen Universität Bonn Ruhr-Universität Bochum

Belgium

Université Libre de Bruxelles Vrije Universiteit Brussel Universiteit Gent Université de Mons-Hainaut

Germany

Universität Mainz

Switzerland EPFL, Lausanne

ANTARCTICA Amundsen-Scott Station

The first results from the full detector!

Japan Chiba University

New Zealand University of Capterbury Aya Ishihara

Event rates

Strings	Data (year)	Livetime	trigger rate (Hz)	HE v rate (per day)
AMANDAII(19)	2000-2006	3.8 years	100	~5 / day
IC40	2008-09	375 days	1100	~40/ day
IC59	2009-10	350 days	1900	~70/ day
IC79	2010-11	320 days	2250	~100/day
IC86-I	2011- 2012	~ year	2700	processing
IC86-II	current		2700	running

IC86 achieving ~ 99% uptime

Neutrino Example

With 40 strings, 2009 May

IceCube Events

With 79 strings, 2010 June

Energy threshold ~10 GeV >10⁸ muons/day >100 neutrinos/day

With 40 strings, 2008 Dec

Digital Optical Module

- PMT: 10 inch Hamamatsu
- Power consumption: 3 W
- Digitize at 300 MHz for 400 ns with custom chip
- 40 MHz for 6.4 µs with fast ADC
- Flasherboard with 12 LEDs
- Local HV

Dynamic range 500 photoelectron/15ns

Waveforms, times digitized in each DOM

25 cm PMT 33 cm Benthosphere

Waveform examples from spe to 10000 pe

1

()

single pe level

Time resolution: ~1ns for bright pulses

• Time difference between neighboring DOMs fired with (bright) flasher pulses: 1 ns.

Ice Models

airborne radar imaging

(Blankenship et al.)

(One of the most important uncertainties)

South Pole station and IceCube

What causes scattering in the ice?

- In the *shallow ice*, scattering is predominantly caused by air bubbles.
- In the deeper ice, *below 1400 m*, the bubbles have converted to non-scattering air hydrate crystals, so-called clathrates, and scattering is caused by **dust**.
- This dust has four main components: mineral grains, salt, acids, and soot. Scattering is mainly caused by the mineral grain component.

The wavelength dependence of the scattering coefficient is described (in the wavelength range 300-600 nm) by a power law:

This power law was fitted to pulsed data at 4 wavelength for IceCube.

Absorption is caused by dust and the ice itself.

Dust Logger

Since scattering is caused by **dust**. It is important to understand

dust logger data string 21

dust logger data of multiple location

Package Dimensions

Flasher on the every DOM

Above a dust layer

Partially in a dust layer

The Ice is very clear Effective scattering length vs Depth

Absorption length vs Depth

Absorption length [m]

Optical Properties

- Combining all the possible information
- These features are included in simulation
- We're always be developing them Nature never tell us a perfect answer but obtained a satisfactory agreement with data!

In-situ Absolute Calibration

Calibrated light source: Standard Candle

- in-situ calibrated N₂ pulsed laser
- light wavelength 337 nm
- at 100% intensity generates 4x10¹² photons per pulse emitted at 41°
- output adjustable between 0.5% ~ 100%

Checks of non saturated region

Red:data Blue:MC

Comparisons of normalized waveforms in non saturated region (shape = photon timing)

UHE neutrino analysis 2010-2012

Total 75 GBytes/day from the South Pole to the North

Name in Filter	Actual BW used (MB/day)	Rate of selected events (Hz)	
MuonFilter_11	18400	30.25	\rightarrow NPE > 1000
SlopFilterTime_11	480	0.45	
EHEFilter_11	3500	2.33 —	
SlopFilterTrig_11	2850	0.81	
DeepCoreFilter_11	9040	26.86	
CascadeFilter_11	8750	27.12	
IceTopSTA3_InIceSMT_11	2100	3.17	
IceTopSTA3_11	2460	6.40	
SDST_LowUp_11	600	31.36	
SDST_VEF_11	160	7.96	
GCLEStarting_11	2070	6.62	
SDST_GCMinBias_11	7900	270.16	
SDST_GCHE_11	3040	104.38	
SDST_GCNWStarting_11	4700	190.94	
FilterMinBias_11	860	2.69	
PhysicsMinBiasTrigger_11	290	1.28	

Data samples

Effective livetime of 670.1 days

2010-2011 - 79 strings config. **May/31/2010-May/12/2011** Effective livetime 319.9days 2011-2012 – 86 strings config May/13/2011-May14/2012 Effective livetime 350.1 days 9 strings (2006) 22 strings (2007) 40 strings (2008) 59 strings (2009) 79 strings (2010) 86 strings (2011)

IceCube has been in a stable operation for more than 5 years

Aya Ishihara

Background

- Atmospheric muons
- Atmospheric neutrinos

Major background is cosmic-ray muons (muon bundles)

Atmos. muon distribution

Relatively easy to cut them away

Basic strategies for search for GZK neutrinos

Background energy smaller than signal

Background is vertical downwardgoing while signal comes near horizon

Atmospheric neutrinos in PeV

- Conventional atmospheric neutrinos from decays of pion and kaons
- Prompt atmospheric neutrinos form decays of heavy flavor short lived mesons (charm, bottom)
- Prompt harder than conventional still steeper than astronomical spectra
- Transition around 3 x 10⁵ GeV depending on the models

No clear evidence of prompt atmospheric v observed so far

Atmospheric neutrinos in a wide energy range

Note that there is position dependence

Aya Ishihara

The analysis flow in 2011-2012

Aya Ishihara

Coincident μ track cleaning

The "burn-sample" data

After

After

Zenith angle resolution in the UHE analysis

- resolution (RMS) for background is \sim 1.2 deg
- resolution (RMS) for signal is ~10 deg due to its stochastic nature
 - $_{\circ}$ $\,$ resolution improves with increasing Nch $\,$
 - $_{\circ}$ $\,$ No strong dependence with NPE $\,$

resolution for signal mu, tau tracks

41

Filtering level NPE and cos theta distributions

NPE and cos zenigh angle distributions comparisons with burn sample

Aya Ishihara

Reco Zenith and NPE distributions (Level-1: #OM > 300, log NPE > 3.5)

Year-1 IC86 data sample

Green – iron CORSICA Blue – proton CORSIKA Black – burn sample Red - signal MC

2011-2012 dataset

The Event Selection for 2011-2012

- Optimization fully based on MC (blind analysis)
- MC verification based on 10% experimental 'burn' sample
- Optimization for 2010-2011 data very similar slightly different in values

Total updated background per 670 days

	Total background (IC79+IC86)
Atmospheric µ	0.0363
Atmospheric conventional v	0.0212
Total	0.0573 (with prompt 0.190)
prompt v (Enberg et al.)	0.133+/-0.0007

2011-2012

2010-2011

	rates per livetime		rates per livetime
Atmospheric µ	0.0089+/-0.0030	Atmospheric µ	0.02742 +/- 0.0054
Atmospheric conventional v	0.0060 +/- 0.0004	Atmospheric conventional v	0.01520 +/- 0.0007
Total	0.0147 (0.0628)	Total	0.0426 (0.127)
prompt v	0.0481 +/- 0.0004	prompt v	0.0851 +/- 0.0007

After unblind - Observation of 2 events

Run119316-Event36556705 NPE 9.628x10⁴ GMT time: 2012/1/3 9:34:01

Run118545-Event6373366

NPE 6.9928x104 GMT time: 2012/8/8 12:23:18

2 events / 670 days background (atm. μ + conventional atm. ν) expectation 0.057 events Preliminary

p-value 1.581x10⁻⁴ (2.95₅)

Aya Ishihara

The highest Charged String Positions

Reconstruction of the two cascade events

Direction and Energy

Consistent with cascade events in detector

CC/NC interactions in the detector

No indication that they are instrumental artifacts that they are cosmic-ray muon induced

we can use **dedicated cascade hypothesis** to the reconstructions of these special events Many students/posdocs contributed

EHE-Jan-2012 **Recorded pulses**

EHE-Aug-2011

Calibrated ATWD waveform above and below the highest charged DOM (S63-29)

Calibrated ATWD waveform above and below the highest charged DOM (S53-23)

Aya Ishihara

What are their energies and directions?

Maximizing the Poisson likelihood based on the recorded waveforms
Charges and timing information

Distance to source (vertical) [m]

PDF of the deposited energy

The "top-down" approach : Inject MC electrons with the event-relevant

phase space and reconstruct them by the same method

Preliminary

Jan 2012 event <u>1.3 PeV</u>
Aug 2011 event <u>1.14 PeV</u>

Jan 2012 event

Deposited Energy $\rightarrow \nu$ Energy (At the IceCube depth = in-ice energy)

 $v_e \rightarrow e + X$ (CC reaction) energy deposit = neutrino energy

 $v_x \rightarrow v_x + X$ (NC reaction) energy deposit = a partial neutrino energy

Jan 2012 event Aug 2011 event Both events: ~1 PeV < Ev < ~4 PeV</td>

In-ice v **Energy** \rightarrow v Energy at the Earth surface

The in-earth $\boldsymbol{\nu}$ propagation effects

What is $E_V^{surface}$ that could induce the PeV event?

when the primary v spectrum $\phi(E_V) \sim E_{..}^{-2}$ 10 Event 118545 probability [arbitrary] 10-1 10-3 10-1 101 7 5 6 8 9 10 Log10(v energy at the Earth surface [GeV])

when the primary v spectrum $\phi(Ev) \sim a \ la \ GZK$: harder spectrum

Log10(v energy at the Earth surface [GeV])

Sharp fall-off of ν_{e} and ν_{μ} at 10' GeV

higher energy population should have converted to the charge leptons (e or μ) before reaching to the IceCube instrumentation volume

EeV (=10⁹ GeV) tail of v_{τ} The regeneration: $v \rightarrow \tau \rightarrow v$

Earth-surface Ev probability

Even assuming the hard GZK-type spectrum and the in-earth propagation effects,

the primary energy of these 2 events must be $1 \text{PeV} < E_V < 50 \text{ PeV}$ at 90% C.L.

This is very conservative statement on their energies

Final selection level - NPE distributions

Final selection level – Energy distribution

Numbers of UHE Events

Preliminary	lceCube 2008-2009 Phys. Rev D83 092003 (2011) 333days	IceCube 2010-2012 per 670days		
Models		E ^{detector} < 10 ⁸ GeV and interaction in detector (A)	All contributi ons (B)	(B) - (A)
Background (conv. atm. v + atm. μ)	0.11		0.14	
Experimental data	0	2	2	0
GZK (Yoshida m=4)*	0.57	0.4	2.1	1.7
GZK (Ahlers max) **	0.89	0.5	3.2	2.7
GZK (Ahlers best fit) **	0.43	0.3	1.6	1.3
GZK (Kotera, dip FRII) ***		1.7	4.1	2.4
GZK (Kotera, dip SFR1)***		0.6	1.0	0.4

*Yoshida et al The ApJ 479 547-559 (1997), **Ahlers et al, Astropart. Phys. 34 106-115 (2010), ***Kotera et al, ^R. Enberg, M.H. Reno, and I. Sarcevic, Phys. Rev. D 78, 043005 (2008), ^ Talk G. Sullivan This conference

A note on the power law fluxes

A factor of ~4 improved from the previous IceCube results

- The world's best sensitivity!
- Will constrain the
 neutrino fluxes down
 to mid-strong
 cosmological
 evolution models

On-going improvements

- IceTop VETO
- Starting event

Note that we also have seen positive fluctuation from 2008-2009 cascade analysis and 2009-2010 muon neutrino analysis

Summary

- Searched for neutrinos with PeV and greater energies in nearly full 2 years of the IceCube data
- Two candidate events observed
 - PeV to 10PeV energy cascade-channel neutrino events (CC/NC interactions within the detector)
 - The highest energy neutrino events observed ever!
- Beyond the conventional atmospheric neutrinos
- Any post-unblinding analysis indicates higher significance (but not official)
- Hints for the PeV events origin from different energy-region
 - More cascade event sensitive analysis
 - Lower energy regions for the spectral transition
 - more statistics

will answer some of questions in relatively short time

Aya Ishihara

Backup

An improvement 1 Background Veto with IceTop

Downward-going region is airshower induced muon background dominated

- Unblinded for 2010-2011 data, no event passed
- Eff area 10% improved in down going region

Number of Events

71

Starting event analysis

Nathan Whitehorn and Claudio Kopper (UW)

- Bright (>6000pe)
 - was > 63000pe, this reduces energy threshold an order
- Outer veto cut to reject backgroun
 - Events started in detector

New effective area

Improvements in 100TeV region

Nathan Whitehorn and Claudio Kopper

We'll expect another 10 events from the fluxes consistent with the 2 events

IceCube Event Classifications

- Event Topology
 - All direction
 - Flavor sensitive
- Event Direction
 - Upward-going neutrinos
 - neutrino induced muon sensitive analy
 - Conventional atmospheric neutrinos
 - Prompt neutrinos + astrophysical neutr
- Event Energy
 - All direction
 - Higher energy than background
 - All Flavor

Aya Ishihara Or the combination of these features

76

Aya Ishihara

IceCube Event Topology

sub-channels "Composite Bright Track"

High $E v_{\tau}$: lollipops and double bangs

ミューオンの走る距離

Muon range in ice >>1Km

 $\mu \rightarrow \mu \pi$ (数10~100mに一回)Photonuclear

Case of tau

• Neutrino cross-section

