# Latest results from T2K



### Shoei Nakayama (ICRR)

for the T2K collaboration

August 24, 2012 @ ICRR seminar

# Introduction

ν

• Flavor eigenstate  $(v_e, v_\mu, v_\tau) \neq Mass eigenstate (v_1, v_2, v_3)$ 

$$\begin{pmatrix} v_{\alpha} \\ v_{\beta} \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \end{pmatrix}$$
Two-flavor case   
 $\alpha, \beta =$  Flavor states   
1, 2 = Mass states

O Probability that a neutrino originally generated as  $v_{\alpha}$  will later be observed as  $v_{\beta}$  after traveling a distance of L :

$$P(v_{\alpha} \rightarrow v_{\beta}) = \sin^{2}(2\theta)\sin^{2}(\frac{1.27\Delta m^{2}(eV^{2})L(km)}{E_{v}(GeV)}) \qquad \Delta m^{2} = m_{2}^{2} - m_{1}^{2}$$

$$\sin^{2}2\theta \sqrt{v_{\beta}} \sqrt{v_{\beta}} \sqrt{v_{\beta}} \sqrt{v_{\beta}} \sqrt{v_{\beta}} \sqrt{v_{\beta}} L$$
oscillation experiments 
$$\int measure the disappearance of v_{\alpha}$$
measure the appearance of v\_{\beta}

### Neutrino flavor detection

(in case of interactions with a nucleon)

#### O Charged Current (CC) interaction

ex.) CC quasi-elastic scattering (CCQE)

$$v_e + n \rightarrow e^- + p$$
  
 $v_\mu + n \rightarrow \mu^- + p$ 

Charged lepton w/ the same flavor



#### **O** Neutral Current (NC) interaction

ex.) NC elastic scattering

$$v_e + p \rightarrow v_e + p$$
  
 $v_\mu + p \rightarrow v_\mu + p$ 



No difference in the visible particles

Identification of the outgoing lepton from CC interactions  $\rightarrow$  Flavor of the parent neutrino

Only upper limit on  $\theta_{13}$  ( $\theta_{13}=0$ ? or  $\neq 0$ ?)  $\rightarrow$  Non-zero  $\theta_{13}$  hunting around the world

### $\theta_{13}$ measurements (other than solar-v and atm-v)

O Reactor neutrino experiments :  $\overline{v}_e$  disappearance

$$P(\overline{v}_e \rightarrow \overline{v}_e) \approx 1 - \sin^2(2\theta_{13}) \sin^2(\frac{1.27\Delta m_{31}^2 L(m)}{E_v(MeV)})$$

pure  $\theta_{13}$ measurement

O Accelerator neutrino experiments :  $v_e$  appearance

$$P(v_{\mu} \rightarrow v_{e}) \approx \sin^{2}(2\theta_{13}) \sin^{2}\theta_{23} \sin^{2}(\frac{1.27\Delta m_{31}^{2}L(km)}{E_{\nu}(GeV)}) \quad \text{leading term}$$

sub-leading terms  $\begin{array}{c} + & 8C_{13}^2S_{12}S_{13}S_{23}(C_{12}C_{23}\cos\delta - S_{12}S_{13}S_{23})\cos\Phi_{32} \cdot \sin\Phi_{31} \cdot \sin\Phi_{21} & \mathsf{CPC} \\ - & & 8C_{13}^2C_{12}C_{23}S_{12}S_{13}S_{23}\sin\delta\sin\Phi_{32} \cdot \sin\Phi_{31} \cdot \sin\Phi_{21} & \mathsf{CPV} \\ + & & 4S_{12}^2C_{13}^2(C_{12}^2C_{23}^2 + S_{12}^2S_{23}^2S_{13}^2 - 2C_{12}C_{23}S_{13}\cos\delta)\sin^2\Phi_{21} & \text{solar} \\ - & & & 8C_{13}^2S_{13}^2S_{23}^2(1 - 2S_{13}^2(\frac{aL}{4E_{\nu}}\cos\Phi_{32}\sin\Phi_{31}) \cdot \mathsf{matter effect} \\ \end{array}$ 

# Breakthrough of non-zero $\theta_{13}$ search (2011~)

O In 2011 June, T2K reported the first indication of  $\theta_{13}$ ≠0 (2.5σ) using the data before the earthquake.



• In 2012, solid confirmation by reactor experiments.

 $1\sigma$  confidence intervals (before Neutrino2012)



This talk : Updated  $\nu_e$  appearance analysis using the full T2K data set

# T2K experiment

# T2K (Tokai-to-Kamioka) experiment





### Main goals

- Discovery of  $v_e$  appearance ( $v_{\mu} \rightarrow v_e$  oscillation)
  - → Measure  $\theta_{13}$
- **Precision** measurement of  $v_{\mu}$  disappearance
  - →  $\delta(\Delta m_{23}^2)$ ~1x10<sup>-4</sup> eV<sup>2</sup> ,  $\delta(\sin^2 2\theta_{23})$ ~0.01



# International collaboration (~500 members from 12 countries)





- o 30GeV  $\sim 10^{14}$  protons extracted every 2.5 $\sim$ 3sec. Spill duration  $\sim$ 5µsec.
- Proton beam impinges the graphite target ( $\phi$ 26mm x 914mm).
- Secondary  $\pi^+$  (and K<sup>+</sup>) focused by 3 magnetic horns (250kA).
- 96m long decay volume.

•  $v_{\mu}$  mostly from  $\pi^+ \rightarrow \mu^+ + v_{\mu}$  ( $v_e$  in the beam from  $\mu$  and K decay)

• Muon monitors : beam direction and intensity, spill-by-spill.



### Off-axis neutrino beam

(Ref. : BNL-E889 proposal)

- Intense, low energy narrow-band
- E<sub>v</sub> peak tuned at oscillation maximum (~0.6GeV)
- Small high energy tail, which creates background events
- T2K : 1<sup>st</sup> experiment to use this idea
- O Important to keep the beam  $E_{v}$  direction stable (1mrad direction shift  $\rightarrow$  2%  $E_{v}$  shift at peak)



### Near neutrino detectors (@280m downstream)



#### On-axis detector (INGRID)

- <u>direct v beam day-by-day monitoring</u> (direction, intensity and profile)
- 16 cubic modules. Sandwich of iron plates and scintillator planes



#### Off-axis detector (ND280)

- <u>measures v flux/spectrum before</u> <u>oscillations @2.5° off-axis angle</u>
- 0.2T dipole magnet
- Fine Grained Detectors (FGDs) x2
   1.6ton fiducial mass target + tracking
- Time Projection Chambers (TPCs) x3
   PID by dE/dx in gas, resolution <10%</li>
- PØD (π<sup>0</sup> detector)
   ECAL (Electromagnetic calorimeters)
   SMRD (Side Muon Range Detector)

### Far neutrino detector : Super-Kamiokande (@295km from J-PARC)



- Water Cherenkov detector, 1000m underground, 22.5kton fiducial mass
- o Excellent  $\mu$ /e PID using ring-shape & opening angle (mis-ID probability ~1%)
- **Ο** T2K: recording PMT hits within ±500µsec of beam arrival time using GPS
- Atmospheric v samples to study detector performance

### Recovery after the 3.11 earthquake



- December 9, 2011 : J-PARC LINAC operation restarted.
- O December 24, 2011 : Neutrino events observed at T2K ND280.
- March 8, 2012 : T2K physics run restarted within 1 year after the earthquake.

# Data collected and analyzed



- <u>Run 1+2 (2010-2011): 1.43 x 10<sup>20</sup> p.o.t.</u> → data set for the published results
   ND280 Run1+2 data is used for oscillation analysis shown today
- O Run 3 (2012) : 1.58 x 10<sup>20</sup> p.o.t.

including 0.21 x 10<sup>20</sup> p.o.t. with 200kA horn operation (13% flux reduction @peak)

ND280 Run3 data is checked and consistent with Run1+2

Data in this talk =  $3.01 \times 10^{20}$  p.o.t. (whole Run1+2+3 data)

### Beam stability



# T2K $\nu_{\rm e}$ appearance analysis

# Signal and BG for T2K $\nu_{\rm e}$ appearance search

### O Signals

Single electron event by CC interaction of  $v_e$  oscillated from  $v_{\mu}$ 

- Mainly CCQE :  $v_e + n \rightarrow e^- + p$
- Protons mostly have momenta below Cherenkov threshold

### o Backgrounds

(1) intrinsic  $v_e$  in the beam (from  $\mu$ , K decays)

- (2) NC single  $\pi^0$  events
  - overlap of 2 γ rings
  - asymmetric decay
     (one of the γ has very low energy)





### Oscillation analysis method



# Neutrino flux prediction

#### Beam simulation based on measurements

- T2K proton beam profile measured by beam 0 monitors input into the simulation
- $\pi$ , K production cross section tuned mainly 0 by NA61/SHINE(@CERN) measurements with 30GeV protons and a graphite target



Phys.Rev.C 84,

034604 (2011)

 $20 < \theta < 40 \text{ mrad}$ 

60<θ<100 mrad

140<θ<180 mrad

FLUKA2008

**URQMD 1.3.1** 

VENUS 4.12

15

p [GeV/c]

20<0-

NA61  $\pi^+$  data

 $0 < \theta < 20 \text{ mrad}$ 

40<θ<60 mrad

100<θ<140 mrad

15

p [GeV/c]

10

5

~10% stat, ~7% sys.

5

10

 $\frac{1}{\sigma_{prod}} \frac{d\sigma}{dp} [1/(GeV/c)]$ 

 $10^{-2}$ 

 $10^{-2}$ 

 $10^{-3}$ 

 $10^{-1}$ 

 $10^{-2}$ 

 $10^{-3}$ 

## Predicted neutrino flux



Total flux error 10~15 %

# Neutrino interactions at T2K

- O Dominant interactions are CCQE
- Additional interactions important for analysis are  $CC1\pi$  and  $NC1\pi^0$  (single pion production)
- O Cross sections not yet measured at T2K ND
- Cross section model (NEUT) uncertainties set from fits to MiniBooNE data
  - Similar v energy, multiple differential cross-section
  - K2K, SciBooNE data sets used as cross check
- Final state interaction (FSI)
  - Semi-classical cascade model
  - Choose several parameter sets to cover data uncertainties → propagate in analysis





### Near detector $v_{\mu}$ measurement (Run 1+2 data)

( $p_{\mu}$ ,  $\theta_{\mu}$ ) distributions of CCQE and CCnonQE enhanced samples are fit to constrain  $\nu$  flux and cross sections



**Basic selection** 

- negative track in FV
- upstream TPC veto
- muon ID by TPC

#### CCQE selection

- 1 FGD+TPC track
- No decay-e in FGD
- 40% efficiency w/
  72% purity

# Flux and cross section fit output

#### Results of the ND280 $\nu_{\mu}$ data fit are extrapolated to the prediction at SK





#### Cross section param. & uncertainties

|                                     | Prior Value and<br>Uncertainty | Fitted Value and<br>Uncertainty |
|-------------------------------------|--------------------------------|---------------------------------|
| M <sub>A</sub> <sup>QE</sup> (GeV)  | 1.21 ± 0.45                    | 1.19 ± 0.19                     |
| M <sub>A</sub> <sup>RES</sup> (GeV) | 1.162 ± 0.110                  | 1.137 ± 0.095                   |
| CCQE Norm. 0-1.5 GeV                | 1.000 ± 0.110                  | 0.941 ± 0.087                   |
| CC1π Norm. 0-2.5 GeV                | 1.63 ± 0.43                    | 1.67 ± 0.28                     |
| NC1π⁰ Norm.                         | 1.19 ± 0.43                    | 1.22 ± 0.40                     |

Prior value and uncertainty from fit to MiniBooNE single pion samples

### ND280 $\nu_e$ CC and NC $\pi^0$ checks





- O Dominant BG for  $v_e$  appearance search are measured at ND280
  - Intrinsic beam  $v_e CC$

**NC**  $\pi^0$ 

• Data consistent with MC prediction

# Far detector (Super-K) systematics

- O Dominant error coming from the ring-counting, PID,  $\pi^0$  mass cuts
- 0 Error for  $v_e$ CC components :
  - Number of events in each (p<sub>e</sub>, θ<sub>e</sub>) in the atmospheric ν control sample is fit to evaluate the systematic error on efficiency by above cuts

#### O Error for $\pi^0$ BG components :

 π<sup>0</sup> topological control sample combining one data electron and one simulated γ (hybrid π<sup>0</sup>)







27

# Predicted number of $v_e$ candidate events

| Predicted # of events w/ $3.01 \times 10^{20}$ p.o.t. |                           |                             |  |  |  |  |  |
|-------------------------------------------------------|---------------------------|-----------------------------|--|--|--|--|--|
| Category                                              | $\sin^2 2\theta_{13} = 0$ | $\sin^2 2\theta_{13} = 0.1$ |  |  |  |  |  |
| Total                                                 | 3.22 ± 0.43               | 10.71 ± 1.10                |  |  |  |  |  |
| $\nu_{e}$ signal                                      | 0.18                      | 7.79                        |  |  |  |  |  |
| $\nu_{e}$ BG                                          | 1.67                      | 1.56                        |  |  |  |  |  |
| $ u_{\mu}$ BG                                         | 1.21                      | 1.21                        |  |  |  |  |  |
| $\overline{v}_{\mu}$ + $\overline{v}_{e}$ BG          | 0.16                      | 0.16                        |  |  |  |  |  |

#### Systematic uncertainties

| Error source                 | $\sin^2 2\theta_{13} = 0$ | $\sin^2 2\theta_{13} = 0.1$ |
|------------------------------|---------------------------|-----------------------------|
| Beam flux+ $\nu$ int.        | 87%                       | 57%                         |
| in T2K fit                   | 0.1 /0                    | 0.1 70                      |
| $\nu$ int. (from other exp.) | 5.9~%                     | 7.5~%                       |
| Final state interaction      | 3.1~%                     | 2.4~%                       |
| Far detector                 | 7.1~%                     | 3.1~%                       |
| Total                        | 13.4~%                    | 10.3~%                      |
| T2K 2011 results             | ~23 %                     | ~18 %                       |

#### Predicted # of events w/ sys. error



Uncertainty reduced much by the ND280 measurement

### T2K event selection at Super-K



# T2K $\nu_{\rm e}$ event selection at Super-K

- 1. Number of rings = 1 88 events
- 2. Electron-like PID 22 events
- Visible energy >100MeV (rejects low-E NC events end electron from invisible μ, π)

21 events

 No μ decay electron (rejects events with invisible μ, π)

16 events



# T2K $\nu_{\rm e}$ event selection at Super-K (cont'd)

5.  $2\gamma$  invariant mass <105 MeV/c<sup>2</sup>

Every event is forced to be reconstructed with the assumption of two showers to reject events w/  $\pi^0$ 



#### 6. Reconstructed Ev < 1.25 GeV

Reject intrinsic  $v_e$  in the beam (high energy  $v_e$  mainly from K)



11 events

11 events after all cuts

# T2K $\nu_{\rm e}$ event selection summary

|                      | MC prediction w/ $sin^2 2\theta_{13}=0.1$ |      |      |        | Data   |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------------------|-------------------------------------------|------|------|--------|--------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      | νμCC                                      | veCC | NC   | BG all | Signal | Data | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| True FV              | 155                                       | 8.0  | 133  | 295    | 12.9   | -    | $\begin{array}{c} 200 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| FCFV                 | 117                                       | 7.7  | 40.5 | 165    | 12.4   | 174  | $\begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} $ |
| 1 ring               | 66.4                                      | 4.8  | 11.6 | 82.8   | 10.4   | 88   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| e-like               | 2.7                                       | 4.8  | 8.1  | 15.6   | 10.3   | 22   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Evis>100MeV          | 1.8                                       | 4.8  | 7.0  | 13.5   | 10.0   | 21   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| No decay-e           | 0.3                                       | 3.8  | 6.0  | 10.1   | 8.6    | 16   | $0 \qquad F_{CFV} \stackrel{I_{-ring}}{=} e_{-like} \stackrel{E_{Vis}}{=} \stackrel{D_{ecay}}{=} p_{OL} \stackrel{E_{Vis}}{=} e_{-like} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\pi^0$ mass         | 0.09                                      | 2.6  | 1.6  | 4.3    | 8.1    | 11   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $E_v^{rec}$ <1.25GeV | 0.06                                      | 1.6  | 1.3  | 2.9    | 7.8    | 11   | $sin^2 2\theta_{13}$ =0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (efficiency)         | <0.1%                                     | 20%  | <1%  | 1%     | 61%    | -    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                      |                                           |      |      |        |        |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                      | 0.06                                      | 1.7  | 1.3  | 3.0    | 0.2    | 11   | $\sin^2 2\theta_{13}=0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

# Observed $\nu_{\rm e}$ candidate events

#### March 19, 2012



#### May 30, 2012





 $v_e$  candidate events (3.01x10<sup>20</sup> p.o.t.) : Observed : 11 events Expected w/ sin<sup>2</sup> 2 $\theta_{13}$ =0 : 3.22 ± 0.43 events

Under the  $\sin^2 2\theta_{13}=0$  hypothesis, the probability to observe 11 or more candidate events is 0.08%.

 $\rightarrow$  3.2 $\sigma$  significance

Evidence of v<sub>e</sub> appearance !



### **Oscillation parameter fits**

Method 1 : Maximum likelihood fit w/ Rate + ( $p_e$ ,  $\theta_e$ ) shape

Method 2 : Maximum likelihood fir w/ Rate + reconstructed  $E_v$ 

(p<sub>l</sub>,θ<sub>l</sub>)

Method 3 : Feldman&Cousins for rate only





Preliminary Results (Method 1)

# Best fit with 1 $\sigma$ errors Normal hierarchy $\sin^2 2\theta_{13} = 0.094^{+0.053}_{-0.040}$ Inverted hierarchy $\sin^2 2\theta_{13} = 0.116^{+0.063}_{-0.049}$ for $\delta_{\rm CP}$ =0, $\sin^2 \theta_{23}$ =0.5

# Results from the 3 methods are very consistent

cf. Daya Bay result (@Neutrino2012)  $sin^2 2\theta_{13} = 0.089 \pm 0.010(stat.) \pm 0.005(sys.)$ 



### Other studies

- o  $v_{\mu}$  disappearance analysis
  - Results w/ Run1+2 data published. Phys. Rev. D85, 031103(R) (2011)
  - Finalizing analysis w/ Run1+2+3 data. Results coming soon.
- Cross section measurements
  - Preliminary results from the flux averaged ν<sub>μ</sub>CC inclusive cross section measurement



- Sterile neutrino search at T2K using NC nuclear deexcitation γ-rays
  - Preliminary results w/ Run1+2 data

and more ...

# Summary and outlook

- Updated results from the T2K  $v_e$  appearance analysis with 3.01 x 10<sup>20</sup> p.o.t. data (~4% of the approved T2K exposure)
  - 11 v<sub>e</sub> candidates observed (3.22 ± 0.43 events expected under  $\theta_{13}$ =0)
    p-value is 0.08%, equivalent to 3.2σ

Evidence of  $v_e$  appearance !  $\rightarrow$ 

opens the possibility to probe CP violation in the lepton sector

For 
$$\delta_{CP}$$
=0, sin<sup>2</sup>  $\theta_{23}$ =0.5,

 $\sin^2 2\theta_{13} = 0.094^{+0.053}_{-0.040}$  (NH),  $\sin^2 2\theta_{13} = 0.116^{+0.063}_{-0.049}$  (IH)

- Will take more data with new high power runs
  - $8 \times 10^{20}$  p.o.t. (2013) →  $12 \times 10^{20}$  p.o.t. (2014) →  $18 \times 10^{20}$  p.o.t. (2015)
  - more precise measurement of  $v_e$  appearance
- An updated  $v_{\mu}$  disappearance measurement is coming soon.

### Next ...

- Non-zero  $\theta_{13}$  is established (>5 $\sigma$ )  $v_e$  appearance is discovered (>3 $\sigma$ )
- → Time to start building the next experiments to measure the CP violation in the lepton sector

# Hyper-Kamiokande1Mt Water CherenkovFiducial Volume = 25 x Super-K







- Water Cherenkov detector technology
  - Well-proven technology, with excellent performance
  - Scalability (can make big one)
- Rich physics topics (discovery potentials)
  - $\bullet$  Discovery potential of CPV,  $\nu$  mass hierarchy, precise measurements of  $\nu$  parameters
  - World best sensitivity for nucleon decay searches, direct test of grand unification picture
  - Supernova V observatory for astronomy and particle physics
  - Other astronomical objects
- Good reason to do it in Japan
  - Existing accelerator J-PARC and its upgrade plan
  - Long, good experience of detector construction, operation, analyses (Super-K)

We had the first open international meeting for this project this week.  $\sim$ 100 physicists participated.

# Supplement