The Resolved Kennicutt-Schmidt Law in Nearby Galaxies

Rieko Momose^{1,2,3}

Sachiko K. Okumura^{2,4}, Jin Koda⁵, Robert C. Kennicutt, Jr⁶, Jennifer Donovan Meyer⁵, Daniela Calzetti⁷, Guilin Liu^{7,8}, Fumi Egusa⁹, Nick Scoville¹⁰, Tsuyoshi Sawada², Nario Kuno¹¹

1. ICRR, University of Tokyo, 2. University of Tokyo, 3. Chile/NAOJ, 4. Japan Woman's University, 5. Stony Brook University, 6. University of Cambridge, 7. University of Massachusetts, 8. Johns Hopkins University, 9. JAXA, 10. Caltech, 11. NRO/NAOJ

CONTENTS

1. INTRODUCTION

- 1. The K-S Law
- 2. Physical background
- 3. Motivation

3. RESULTS & DISCUSSIONS

- 1. From all galaxies
- 2. Among structures

4. SUMMARY

2. OBSERVATIONS & METHODS

- 1. Methodology
- 2. The K-S Law

ABSTRACT

not yet published

not yet published

We obtain super-linear slope of the K-S law on 500 pc from 10 galaxies

Star formation mechanism indicated by the K-S law is little different among structures

1. INTRODUCTION

The Kennicutt-Schmidt Law

 Power law correlation between SFR and gas density (Schmidt 59)

$$\Sigma_{\rm SFR} = A\Sigma_g^N$$
,

 Observationally, the index has been estimated among galaxies (Kennicutt 98; following)

$$-$$
 N = 1.2 -- 1.8

** Star Formation Rate (SFR)
 The amount of gas mass converted to stars per unit time [M_●/yr]

Physical Predictions From The K-S Law

 Star formation would be regulated by some physically motivated time scale

$$\Sigma_{
m SFR} = \epsilon_{
m tphy} \; rac{\Sigma_{
m gas}}{t_{
m phy}},$$

$$\Sigma_{\rm SFR} \propto \epsilon_{
m tphy} \; \Sigma_{
m gas}^{1-m} = \epsilon_{
m tphy} \; \Sigma_{
m gas}^N,$$

$$N = 1$$

 Constant star formation at fixed time scale

$$ext{SFR} = rac{
ho_{ ext{gas}}}{t_{ ext{SF}}}.$$

$$\Sigma_{\rm SFR} = \epsilon \Sigma_{\rm gas},$$

 Star formation at a free-fall time scale (t_{ff})

$$t_{\rm ff} = \sqrt{\frac{3\pi}{32G\rho_{\rm gas}}}.$$

$$\Sigma_{
m SFR} = \epsilon_{
m ff} \; rac{\Sigma_{
m gas}}{t_{
m ff}} \propto \Sigma_{
m gas}^{1.5},$$

$$N = 1.5$$

 Star formation regulated by collision time scale

$$t_{
m cc} = rac{\lambda}{v} = rac{h m_{
m GMC}}{\sqrt{2} \; \Sigma_{
m gas} \; a^2 \; \pi v}, \; \lambda_{
m mfp} = rac{1}{\sqrt{2} N D},$$

$$\Sigma_{
m SFR} = \epsilon_{
m cc} \; rac{\Sigma_{
m gas}}{t_{
m cc}} \propto \Sigma_{
m gas}^2.$$

$$N = 2$$

Physical Predictions From The K-S Law

In order to understand the mechanism of star formation, estimating the index of the K-S law is important

 Constant star formation at fixed time scale

$$ext{SFR} = rac{
ho_{ ext{gas}}}{t_{ ext{SF}}}.$$

$$\Sigma_{\rm SFR} = \epsilon \Sigma_{\rm gas},$$

Star formation at a free-fall

$$t_{\rm ff} = \sqrt{\frac{3\pi}{32G\rho_{\rm gas}}}.$$

$$\Sigma_{\rm SFR} = \epsilon_{\rm ff} \, \frac{\Sigma_{\rm gas}}{t_{\rm cr}} \propto \Sigma_{\rm gas}^{1.5},$$

$$N = 1.5$$

 Star formation regulated by collision time scale

$$t_{
m cc} = rac{\lambda}{v} = rac{h m_{
m GMC}}{\sqrt{2} \; \Sigma_{
m gas} \; a^2 \; \pi v}, \; \lambda_{
m mfp} = rac{1}{\sqrt{2} N D},$$

$$\Sigma_{
m SFR} = \epsilon_{
m cc} \; rac{\Sigma_{
m gas}}{t_{
m cc}} \propto \Sigma_{
m gas}^2.$$

$$N = 2$$

ICRR seminar June 14th, 2012

Recent Study of The K-S Law 1

- The K-S law studies are shifting those of obtained within a galaxy
 - NGC 5194 (M 51): ~ 500 pc (e.g. Kennicutt et al. 07; Blanc et al. 09)
 - M 33: 80-200 pc: poor--break down (Verley et al. 10; Onodera et al. 10)

The mechanism of triggering star formation operates at a scale smaller than 500 pc.

Recent Study of The K-S Law 2

- Statistical study of K-S law on sub-kpc scale (Bigiel et al. 08)
 - Molecular gas is dominant above 10 M_☉ pc⁻²
 - The correlation between Σ_{SFR} and Σ_{H2} is N ~ 1

Remaining Problem And Motivations

* Resolved K-S law

- The K-S law traced by CO(J=1-0) breaks down on GMC scale (< 100 pc), but holds on 500 pc
- The index of N ~ 1 becomes standard value of the K-S law
 - No study of the K-S law on sub-kpc scale using CO(J=1-0) line among several galaxies
 - Little study to estimate accurate SFR

***** Motivation

- Studying the K-S law on 500 pc scale using CO(J=1-0) line as a tracer of the amount of molecular gas to 10 nearby galaxies
 - We resolve galactic structures and study the K-S law to each structure

2. OBSERVATIONS & METHODS

Target of The Study

Nearby disk galaxies which have relatively face-on viewing

NAME	Distance (Mpc)	V _{LSR} (km/s)	Hubble Type	i (deg)	P.A. (deg)
NGC 3521	10.1	801	SABbc	64	163
NGC 3627	9.38	727	SABb	65	173
NGC 4254	16.5	2407	SAc	-30	24
NGC 4303	16.1	1556	SABbc	28	312
NGC 4321	14.32	1571	SABbc	32	30
NGC 4736	5.2	308	SAab	36	105
NGC 4826	7.48	408	SAab	-59	115
NGC 5055	7.8	484	SAbc	56	105
NGC 5194	7.62	463	SABbc *	20	163
NGC 6946	6.8	50	SABcd	32	53

Methodology of The Study

- Re-gridding Σ_{SFR} and Σ_{H2} data to 500 pc scale
 - Σ_{H2} : CO(J=1-0) data
 - Σ_{SFR}: Ha + 24um data
- We compare pixel-by-pixel of both Σ_{SFR} and Σ_{H2} data, and plot each data point in the K-S law plot
- Fitting the linear regression to the correlation

Observations

- We observed CO(J=1-0) line by NRO45 and CARMA as a part of CANON survey
 - ***** NGC 4303 by Momose et al. 10
 - * NGC 5194 by Koda et al. 09

*** CANON = CARMA and NOBEYAMA Nearby-galaxies CO survey**

Data Combining

- We require the high spatial resolution data without missing flux
- Combining the data observed by singledish and interferometer can recover the total flux with high spatial resolution

- Molecular gas surface density is estimated using the combined data
 - $Xco = 2.0 \times 10^{20} [cm^{-2} (K km s^{-1})^{-1}]$

$$\Sigma_{\rm H_2} \ [M_{\odot} \ \rm pc^{-2}] = 4.8 \times \cos{(i)} \left(\frac{I_{\rm CO}}{\rm K \ km \ s^{-1}} \right) \ \left(\frac{X_{\rm CO}}{\rm cm^{-2} \ (K \ km \ s^{-1})^{-1}} \right)$$

Data Combining

- We require the high spatial resolution data without missing flux
- Combining the data observed by singledish and interferometer can recover the total flux with high spatial resolution

- Molecular gas surface density is estimated using the combined data
 - $Xco = 2.0 \times 10^{20} [cm^{-2} (K km s^{-1})^{-1}]$

$$\Sigma_{\rm H_2} \ [M_{\odot} \ {\rm pc^{-2}}] = 4.8 \times \cos{(i)} \left(\frac{I_{\rm CO}}{{\rm K \ km \ s^{-1}}}\right) \ \left(\frac{X_{\rm CO}}{{\rm cm^{-2} \ (K \ km \ s^{-1})^{-1}}}\right)$$

Estimating SFR

- We can estimate SFR counting emission from young stars and assuming IMF
 - Ha and 24um images are used to estimate SFR (Kennicutt 98; Calzetti et al. 07)

SFR
$$[M_{\odot} \text{yr}^{-1}] = 7.9 \times 10^{-42} L(\text{H}\alpha)_{\text{corr}} [\text{erg s}^{-1}]$$

= $7.9 \times 10^{-42} \{L(\text{H}\alpha)_{\text{obs}} + (0.031 \pm 0.006)L(24\mu\text{m})\} [\text{erg s}^{-1}]$

 We carried out diffuse ionized gas (DIG) subtractions

Diffuse Ionized Gas

	local	not young stars	fraction	
На	leak emission	ionized by hot old stars	30-50 % of total L _{На}	
24um		dust heated by old stars	20-80 % of total f _{24um}	
2010年6日14日 大曜日				

3. RESULTS & DISCUSSIONS 3.1 GLOBAL K-S LAW 3.2 STRUCTURAL K-S LAW

3.1 GLOBAL K-S LAW FROM ALL GALAXIES

The K-S Law From All 10 galaxies

not yet published We obtain superlinear slope of the K-S law on 500 pc

- We obtain the index of
 - $N = 1.75 \pm 0.09$ (DIG subtracted) on 500 pc
 - N = 1.26±0.03 on 750 pc

Discussion 1 Physical Predictions

Star formation would be regulated by some physically motivated time scale

$$\Sigma_{
m SFR} = \epsilon_{
m tphy} \; rac{\Sigma_{
m gas}}{t_{
m phy}},$$

$$\Sigma_{\rm SFR} \propto \epsilon_{\rm tphy} \; \Sigma_{\rm gas}^{1-m} = \epsilon_{\rm tphy} \; \Sigma_{\rm gas}^{N},$$

$$N = 1$$

Constant star

fixed time scale

formation at

• Star formation at a free-fall time scale (t_{ff})

$$\mathrm{SFR} = rac{
ho_{\mathrm{gas}}}{t_{\mathrm{SF}}}.$$

$$\Sigma_{\rm SFR} = \epsilon \Sigma_{\rm gas},$$

$$t_{
m ff} = \sqrt{rac{3\pi}{32G
ho_{
m gas}}}.$$

$$\Sigma_{
m SFR} = \epsilon_{
m ff} \, rac{\Sigma_{
m gas}}{t_{
m ff}} \propto \Sigma_{
m gas}^{1.5},$$

$$N = 1.5$$

Star formation regulated by collision time scale

~100 pc

$$t_{
m cc} = rac{\lambda}{v} = rac{h m_{
m GMC}}{\sqrt{2} \; \Sigma_{
m gas} \; a^2 \; \pi v}, \; \lambda_{
m mfp} = rac{1}{\sqrt{2} N D},$$

$$\Sigma_{
m SFR} = \epsilon_{
m cc} \; rac{\Sigma_{
m gas}}{t_{
m cc}} \propto \Sigma_{
m gas}^2.$$

$$N = 2$$

Discussion 1 Physical Predictions on 500 pc

N = 1.5

- Within a 500 pc, there may be some GMCs to form stars
- N > 1
 - Existence of molecular gas is not enough to form clouds which will bear stars
- = 2 Self-gravity of molecular gas
 - Cloud-cloud collision
 - Mixture of both
- N = 2
 500 pc

Any mechanism is required for triggering star formation on 500 pc scale

Discussion 2 Gas Tracers and The Index

Gao & Solomon 04

L_{HCN} (K km s⁻¹ pc²

The relation between the amount of molecular gas and SFR (e.g. Kennicutt 07; Liu et al. 11; This study)

- N > 1

* The relation between the molecular gas which can form stars and SFR

The relation between dense gas and SFR (e.g. Gao & Solomon 04; Komugi et al. 07; Iono et al. 09)

- N~1

* The relation between starforming cores and SFR

Line	n _{crit} [cm ⁻³]	
CO (J=1-0)	3 x 10 ²	
HCN (J=1-0)	~ 10 ⁵⁻⁶	
CO (J=3-2)	~ 104	
CO (J=2-1)	~ 10 ³	

CO(J=1-0) is a best tracer to understand SF mechanism

109

Summary 1

- We estimate the K-S law index by estimating accurate SFR and molecular gas surface density from CO(J=1-0)
- The K-S law on 500 pc shows the super-linear slope with N = 1.75.
- Some trigger mechanisms, such as self-gravity of molecular gas or cloud-cloud collision or mixture of them are necessary for forming stars.
- The correlation between SFR and amount of the molecular gas traced by CO(J=1-0) can indicate the mechanism of star formation rather than the correlation seen by dense gas tracers

3.2 STRUCTURAL K-S LAW WITHIN A GALAXY

Star Formation Within A Galaxy

We confirmed the difference of SFE depending on galactic structures (Momose et al. 10)

- Active star formation in the spiral arms
- Star formation is suppressed in the bar
- Galactic dynamics (e.g. galactic shock, shear in the bar) would regulate star formation (e.g. Downes et al. 96; Sheth et al. 02, 04)

* Star Formation Efficiency (SFE)
The ratio of SFR to gas mass [/yr]

Definition of Galactic Structures

 We divide all regions of a galaxy to the nucleus, spiral arms, bar and other regions where is including inter-arm region

Nucleus: central 500 pc around the dynamical center

Bar: estimate using IRAF

Spiral Arms/Other: estimated using GALFIT

Star Formation in Each Structure

not yet published

The Variation of Star Formation Activities

- We define SFE_{tphy} as following:
 - * Efficiency toward the averaging star formation mechanism given area

$$\Sigma_{\rm SFR} = \epsilon_{\rm tphy} \frac{\Sigma_{\rm gas}}{t_{\rm phy}},$$

$$\Sigma_{\rm SFR} \propto \epsilon_{\rm tphy} \Sigma_{\rm gas}^{1-m} = \epsilon_{\rm tphy} \Sigma_{\rm gas}^{N},$$

$$\rm SFE_{\rm tphy} = \frac{\Sigma_{\rm SFR} [M_{\odot} \ \rm yr^{-1} \ kpc^{-2}]}{\Sigma_{\rm H2}^{N} [M_{\odot} \ \rm pc^{-2}]^{N}}$$

N = 1.75

The Variation of Star Formation Activities

- We compare peak and distribution of the SFE_{tphy}s
 - Scatter: the nucleus is smaller than rest of structures
 - Peak: little different
- The SFE_{tphy}s are little different among structures from all galaxies
 - Averaging mechanism of star formation can be the same
 - The nucleus may be different than rest of structures

Summary 2

- We compare the K-S law for each structure of a galaxy -- the nucleus, bar, spiral arms and other region
- Averaging structures from all sample galaxy show the little difference of star formation mechanism
 - Star formation mechanism may be different from other structures of a galaxy

4. SUMMARY

Summary

Aim & Method

- We study the K-S law on 500 pc scale among nearby 10 galaxies
- In order to estimate the amount of molecular gas and SFR accurately,
 - we combined CO(J=1-0) data observed by CARMA and NRO45, respectively
 - we subtracted DIG from Ha and 24um images

Result & Discussion

- We obtained the super-linear slope of the K-S law (N = 1.75)
 - Star formation can be induced by some trigger mechanism
 - The correlation between SFR and bulk of molecular gas traced by CO(J=1-0) can show the mechanism of star formation
- Self-gravity of molecular gas is a main mechanism for star formation in each structure of a galaxy

Future Works

- Bulk gas vs SFR
 - Global K-S law --> N > 1 (~ 1.5)
 - Resolved K-S law --> N > 1
 - GMC scale --> break-down

Which scale causes break-down of the K-S law?

