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High Energy Cosmic Rays
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nearest to us AGN — Centaurus A:

additional constaints
— from energy losses
in the source

= UHECR sources —
most likely
extragalactic

favorable option —
—_— sw::‘;a];-:iu e i Active Galactic
rlnldllr-ws il e Nuclei (AGN)
LTSS = 4 CR acceleration
possible near the
black hole or in a

Accretion Formation of osiragakactic fois g : jet/lObe
disy Trom black hels accratian disk




AGNs already established as UHECR sources?
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@ correlation angular
scale (3°) — consistent
with expected
deflections for protons

@ considerable excess of
events in the direction
of CenA




AGNs already established as UHECR sources?

Pierre Auger Collaboration: correlation of UHECR arrival
directions with nearby AGNs at 30 level [Science 318 (2007) 938]

@ correlation angular
scale (3°) — consistent
with expected
deflections for protons

@ considerable excess of
events in the direction
of CenA




AGNs already established as UHECR sources?

Pierre Auger Collaboration: correlation of UHECR arrival
directions with nearby AGNs at 30 level [Science 318 (2007) 938]

@ correlation angular
scale (3°) — consistent
with expected
deflections for protons

@ considerable excess of
events in the direction
of CenA




AGNs already established as UHECR sources?

@ however: correlation
signal weakened for
larger event sample

@ now: 20 deviation
o 1 from isotropic

0 0 20 30 a0 50 60 7 ® distribution

Number of events (excluding exploratory scan)

Correlating fraction




AGNs already established as UHECR sources?

@ however: correlation
signal weakened for
larger event sample
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AGNs already established as UHECR sources?

Telescope Array Collaboration: 8 events out of 20 correlate with
AGNs [Sagawa, talk at TeVPA-2011]
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AGNs already established as UHECR sources?

Telescope Array Collaboration: 8 events out of 20 correlate with
AGNs [Sagawa, talk at TeVPA-2011]

TA SD data beyond 57 EeV + Correlations of data with AGN
+ Veron catalog 12'" edition AGN within 3.1°
- 2<0.018 Number of TA data

correlated 20 T T T =
with AGN 1

Niot
Number of TA data

@ = consistent both with the isotropy and with the AGN
correlation hypothesis
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Propagation in extragalactic space & GZK cutoff

@ why restrict oneself with nearby sources?

@ the Universe is filled with 2.7K cosmological background
radiation (CMB)

@ = UHE protons quickly loose energy on CMB
[Greisen, PRL 16 (1966); Zatsepin & Kuzmin, JETP Lett. 4

(1966)]
p+1°
P-+Ycme — { N Trt
= beyond ~ 100 Mpc the Universe is opaque for UHECR

@ for a uniform distribution of extragalactic CR sources results
in a spectral cutoff at E ~ 5 x 10'% eV (GZK-cutoff)

@ in turn, UHE nuclei loose energy via photodisintegration on IR
photons: A+Yy— (A—1)+p/n = similar cutoff



Trans-GZK events & physics beyond the Standard Model?

Observation of trans-GZK events by the AGASA Collaboration
[PRL 81 (1998)]
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Observation of trans-GZK events by the AGASA Collaboration

[PRL 81 (1998)]
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Observation of trans-GZK events by the AGASA Collaboration
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Now: UHECR cutoff — observed by 3 independent collaborations

\_‘7‘107““\““\““\“““““““‘*‘\“‘L
@ @ HiRes-2 Monocular
0 B HiRes-1 Monocular
o Vv AGASA v
NE + Yy Y** | *
: ”W
ol
&
5P ] . .
T @ HiRes Collaboration
+* [PRL 100 (2008)]:
SN TS R S B GZK-cutoff observed
17 175 18 185 19 195 2 25 2

logfE (eV)) with 50 significance



Iogm(E/eV)

20 205

E3J(E) [km?yrilsrieV?

| © HiRes

o Auger

[ - power laws
: — power laws + smooth function

—
/lsys(EFZZ%

|
10°

Ll
10°

Energy [eV]

Trans-GZK events & physics beyond the Standard Model?

Now: UHECR cutoff — observed by 3 independent collaborations

@ HiRes Collaboration

[PRL 100 (2008)].
GZK-cutoff observed
with 50 significance

o Pierre Auger Collab.

[PRL 101 (2008)]:
cutoff observed with
60 significance
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Now: UHECR cutoff — observed by 3 independent collaborations
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Now: UHECR cutoff — observed by 3 independent collaborations
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o trans-GZK story - finally over

] @ HiRes Collaboration
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cutoff observed with
60 significance

_4 @ Telescope Array Collab.

[Stokes, ICRC-2011].
cutoff observed with
3.90 significance
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UHECR cutoff: GZK or not?

@ UHECR also loose energy via €"e -pair production on CMB:
p+y—p+e +e

o if UHECR are protons: spectral 'dip’ will be produced

@ 'dip’ model for galactic-extragalactic transition
[Berezinsky & Grigor'eva, A&A 199 (1988)]

@ transition takes place well before the 'ankle’
o observed CR 'ankle’ = pair production 'dip’

@ energy-relation between GZK cutoff and the "ankle’ (='dip’)
— well reproduced

@ if UHECR = Fe: no pronounced 'dip’
@ = galactic-extragalactic transition — at the 'ankle’

= measurements of CR composition — key to the UHECR puzzle
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observations of nuclear-e/m cascades induced by CR particles:
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Extensive air shower development

CR composition studies with fluorescence detectors (FD)

@ most sensitive to primary particle interactions (via Xmax)

Klnel

p—air

@ = suffer from uncertainties of GE‘eL.r c
0

@ seeing it optimistic: probe proton-air (nucleus—alr) interactions
at maximal energies (up to ~ 107! eV)

CR composition studies with ground-based detectors (SD)

@ most sensitive to interactions of secondary pions (also kaons
& (anti-)nucleons) at intermediate energies (E ~ /Ep)
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Nucleus-induced air showers & superposition model

For average (only!) air shower characteristics: A—induced EAS of
energy E — equivalent to A proton-induced showers of energy E/A

@ N of 'wounded’ nucleons per collision: (va) = g‘eglr/o'”f'air
(valid up to target diffraction)

@ nuclear m.f.p. is Gg‘fgir/oi}\‘f'air shorter

. . - GlEN
@ however, each nucleon interacts with probability: Wiy = %
A

—air

° = (Xhax(E)) = (Xma(E/A)); (NG, (E)) ~ A- (NG, (E/A))

o (XRax(E)) ~ const+ ERINE, ER= d(Xhax(E)) /dE;
(Ng/,(E/A)) DE%M, de~11, a,~0.9

o = (XA (E)) ~ (XRax(E)) —ERINA
(NA(E)) = (NB(E)) A%%;  (NA(E)) ~ (NR(E)) A0
— nucleus-induced air showers reach their maxima earlier,
have less € and more muons
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UHECR composition from Xmax observations

EAS maximum position Xmax — the key to the UHECR composition

K0 T
85 Preliminary 3 ]
[ =" _] @ spectatular results from
“t 1 HiRes Collab. [PRL (2005);
i PRL (2010)]: p-dominated
S composition above 1018 eV
700
_#E e supported by data of
F = zgEe 4 Telescope Array Collab.

[Tameda, ICRC-2011]

wll

(7)) ——— L wln o Lo Pl [
q?! 182 184 186 188 19 192 194 196 198
log(EfeV)



UHECR composition from Xmax observations

EAS maximum position Xmax — the key to the UHECR composition
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EAS maximum position Xmax — the key to the UHECR composition

@ Pierre Auger Collab.:
change from light to heavy
CRs above 10% eV
[PRL (2010); Facal San
Luis, ICRC-2011]
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@ interpretation of data —
strongly model-dependent!

@ is it possible to reduce

" " model-dependence?!
E [eV]

® yes, by studying shower fluctuations, e.g. RMS(Xmax)
[Aloisio, Berezinsky, Blasi & SO, PRD 77 (2008)]
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@ but: almost pure Fe at the
highest energies?!
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Alternative approach — study of muon densities at ground

o Pierre Auger Collab.:

strong muon excess observed compared

to model predictions! [Rodriguez, ICRC-2011]
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UHECR composition from muon component?

Alternative approach — study of muon densities at ground

o Pierre Auger Collab.:

strong muon excess observed compared
to model predlctlons| [Rodrlguez ICRC-2011]
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@ may be UHECR are gold nuclei?!
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~ 100% (if data were pure p)
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@ highly unlikely, rather CR interaction models should be wrong
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@ similar physics content for all MC generators used in CR field:
@ multiple scattering
o soft & hard processes
@ nonlinear effects, e.g. parton shadowing (not in all models)

@ representative models:

@ QGSJET (Kalmykov & SO, 1993-1997)

s SIBYLL 1.7/2.1 (Ahn, Engel, Gaisser, Lipari & Stanev,
1994/1999)

o QGSJET 11-03/04 (SO, 2006,/2011)

s EPOS (Liu, Pierog & Werner, 2006-2011)
@ all the models based on similar ideas / qualitative approaches
o differ in implementations, theory input, etc. = in predictions

@ model updates / cross checks with new data ~snecessary
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MC generators & LHC data

@ LHC data: Ncn(S) rises quicker than predicted by most MCs
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@ however: none of the models describes all the observables

Effect of model retuning to LHC data?
@ in the following investigated using the QGSJET-II model
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QGSJET-II model

@ based on combined treatment of soft & hard parton processes

@ soft processes (07 < QF):

SO HEITE) 'soft Pomeron’

QCbladder @ hard processes (g > Q3):
= + DGLAP formalism

@ taken together:

soft Pomerol 0 o '
semihard Pomeron

@ nonlinear processes (parton shadowing / saturation):
Pomeron-Pomeron interactions

@ NB: in this model saturation may be reached for soft
(g < Q3) partons only
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New version of QGSJET-Il (QGSJET-11-04)

@ QGSJET-II-03: only
dominant ('net-like')
Pomeron-Pomeron
interactions

o QGSJET-I1I-04: also 'Pomeron
loops' included

@ small at low parton density
@ suppressed at high density

@ still a finite correction at large b
= influence cross sections &
particle production

@ however: small impact on EAS characteristics
if the model is calibrated to the same data set [SO, 2009/

@ here: impact of calibration to LHC data




Multiplicity adjustment

@ Ncn(S)-rise: too steep in QGSJET-I1-03
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Multiplicity adjustment

changing the cutoff QS between soft & hard processes
(25— 3GeV?)

@ parton saturation operates over a larger kinematic space

@ = slows down multiplicity rise
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Multiplicity: cross check with ATLAS data

dNch/dn: model-independent results from ATLAS

@ qualitatively the same trend

o the level of (dis)agreement varies for different event selections
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Multiplicity: cross check with ATLAS data

dNch/dn: model-independent results from ATLAS:

@ overall multiplicity corrections at ~ 10% level
@ = insignificant for air shower predictions
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Generally, enhanced production of (anti-)baryons may increase EAS
muon content [Pierog & Werner, PRL (2008)]

@ more energy kept in the hadronic cascade
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Production of strange particles

Enhancement of strange particle production may also increase Ny

@ more energy channeled into hadronic cascade

@ QGSJET-II-03: noticeable correction required by LHC data
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Production of strange particles

Enhancement of strange particle production may also increase Ny
@ more energy channeled into hadronic cascade
@ QGSJET-II-03: noticeable correction required by LHC data
@ higher kaon yields in older models (QGSJET, SIBYLL)
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Inelastic cross section

150 —

cross section (mb)

100

QGSJET-I-04
QGSJET-II-03
SIBYLL-2.1

o side-effect of higher
Qg—cutoff: slower rise of
cross sections

|oeg., thos - consistent with
50 E710 data at 1.8 TeV
0 Codl vl O |0Wer Cross SeCtiOnS O
10° 10° 10 supported by LHC data
c.m. energy (GeV)
QGSJET-11-04 QGSJET-11-03 SIBYLL  ATLAS
MBTSanD 54.1 62.3 68.4 519+5.7
MBTSoRr 60.8 69.8 74.7 587+6.5

Table: Model predictions for “visible” cross sections (in mb) at \/S=7
TeV for ATLAS MB triggers: at least one charged hadron at

—3.84< 1 < —2.09 and/or at 2.09< 1 < 3.84 (MBTSanp iOR).
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Oinel (mb)

600

500

400

300

200

b=}
'
o,
=
.

SIBYLL-2.1
QGSJET-I-03

—— QGSJET-II-04

A I I I N
4 10

100 100 10° 10
E, (GeV)

)

reduction of GiF’,‘pe'
= slower energy-rise of

proton-air cross section

deeper shower penetration



Proton-air cross section & Xmax

Oinel (mb)

600

500

400

300

200

b=}
'
o,
=
.

SIBYLL-2.1
QGSJET-I-03

—— QGSJET-II-04

A I I I N
4 10

100 100 10° 10
E, (GeV)

)

reduction of GiF’,‘pe'
= slower energy-rise of

proton-air cross section

deeper shower penetration



Proton-air cross section & Xmax
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Proton-air cross section & Xmax

@ elongation rate (ER)
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