Cherenkov Telescope Array (CTA) Project















SNRs

Pulsars and PWNe

Micro quasars X-ray binaries

AGNs

GRBs



Origin of cosmic rays



Dark matter



### Space-time & relativity





### CTAに向けて 次世代 高エネルギーガンマ線観測施設

#### MAGIC Phase II (MAGIC-I + MAGIC-II) in 2009

#### >1000 sources will be discovered





## **Kifune Plot** (expectation from log S - log N)

#### Kifune Plot





# CTA 仕様・パラメーター

- 観測エネルギー領域: 20-30GeV ~ 100TeV
  - 20-30GeV → 遠方の活動銀河核(z<2)の研究、系外宇宙線起源、EBL 背景放射光密度の測定(星形成史)</li>
  - 100TeV → 銀河宇宙線源の研究
- 10倍の感度向上(HESS, MAGICから)
  - 観測される天体数30倍(1000-2000)
  - 感度~1mCrab
- 3倍の角度分解能
  - Better morphological study
- 全天観測
  - 北半球:20-30GeV ~ 1TeV (mainly extragalactic science)
    - Several 23m class telescopes + some 12m class telescopes
  - 南半球:20-30GeV ~ 100TeV (galactic + extragalactic science)
    - Several 23m class telescopes + many 12m class telescopes + some 6m telescopes



![](_page_7_Picture_0.jpeg)

### CTA observation modes

Monitoring 4 telescopes

Monitoring 4 telescope Deep field ~1/2 of telescopes Monitoring 4 Telescopes

![](_page_8_Picture_5.jpeg)

Deep field ~1/3 of telescopes

Monitoring 1 telescope

### CTA observation modes

![](_page_9_Picture_1.jpeg)

Survey mode: Full sky at current sensitivity in ~1 year

![](_page_10_Picture_0.jpeg)

# CTA候補地(北、南 2 stations)

One observatory with two sites operated by one consortium

![](_page_10_Figure_3.jpeg)

![](_page_11_Picture_0.jpeg)

# Design Study started in Jan. 2008

#### Milestones, tasks are defined in each WP

| WP1  | MNG  | Management of the design study                                            |
|------|------|---------------------------------------------------------------------------|
| WP2  | PHYS | Astrophysics and astroparticle physics                                    |
| WP3  | MC   | Optimization of array layout, performance studies and analysis algorithms |
| WP4  | SITE | Site evaluation and site infrastructure                                   |
| WP5  | MIR  | Telescope optics and mirror                                               |
| WP6  | TEL  | Telescope structure, drive, control                                       |
| WP7  | FPI  | Focal plane instrumentation, mechanics and photo detectors                |
| WP8  | ELEC | Readout electronics and trigger                                           |
| WP9  | ATAC | Atmospheric monitoring, associated science & instrument calib.            |
| WP10 | OBS  | Observatory operation and access                                          |
| WP11 | DATA | Data handling, data processing, data management and access                |
| WP12 | QA   | Risk assessment and quality assurance, production planning                |

![](_page_12_Picture_0.jpeg)

タイムスケジュール

| FP7 DS application   | ✓ "Kick-off": Barcelona, Jan 24-25 |    |                 |    |                  |     |     |     |
|----------------------|------------------------------------|----|-----------------|----|------------------|-----|-----|-----|
|                      | 06                                 | 07 | 08              | 09 | 10               | 11  | 12  | 13  |
| Array layout         |                                    |    |                 |    |                  |     |     |     |
| Telescope design     |                                    |    | <sup>esic</sup> | h  |                  |     |     |     |
| Component prototypes |                                    |    |                 |    |                  |     |     |     |
| Telescope prototype  |                                    |    |                 |    | <sup>ot</sup> ot | Vpe |     |     |
| Array construction   |                                    |    |                 |    |                  | 6   | Ari |     |
| Partial operation    |                                    |    |                 |    |                  |     |     | y P |

I I Concep. Detailed Design Design

![](_page_13_Picture_0.jpeg)

# CTA preliminary M.C. Study

### **Configurations: 97 tel. hybrid system**

![](_page_13_Figure_3.jpeg)

## **Impact of Pixel size** to the Angular resolution

10

![](_page_14_Picture_1.jpeg)

![](_page_15_Picture_0.jpeg)

![](_page_15_Figure_1.jpeg)

![](_page_15_Figure_2.jpeg)

![](_page_15_Figure_3.jpeg)

![](_page_16_Figure_0.jpeg)

# Report from M.C. group

### How many telescope sizes?

 Current studies show that we can get close to the goal sensitivity curve within budget for an array with 3 telescope sizes

![](_page_16_Figure_4.jpeg)

![](_page_17_Figure_0.jpeg)

- Current instruments have passed the critical sensitivity threshold and reveal a rich panorama, but this is clearly only the tip of the iceberg
- Broad and diverse program ahead, combining guaranteed astrophysics with significant discovery potential

# Great success!! HESS の銀河面サーベイ

![](_page_18_Figure_1.jpeg)

![](_page_19_Picture_0.jpeg)

Galactic sources 200~400 sources with CTA

**Pulsars** 

![](_page_19_Figure_2.jpeg)

Where is **PEVATRON**???

# Guaranteed sources Extragalactic sources

![](_page_20_Figure_1.jpeg)

27 sources (2 x FR-I, 24 BL Lac(HBL, IBL, LBL), 1 x FSRQ)

~800 sources with CTA

First "simultaneous" GeV-TeV spectrum of Mrk421 Good agreement between these 2 different instruments. Energy coverage of 5 orders of magnitude without GAPS.

#### Important for modeling of the source

![](_page_21_Figure_2.jpeg)

15

![](_page_22_Figure_0.jpeg)

![](_page_22_Figure_1.jpeg)

![](_page_23_Picture_0.jpeg)

## 相対論・量子重力理論の検証 高エネルギー光子 × 長い伝搬距離

![](_page_23_Figure_2.jpeg)

**Short Wavelenth** 

If Gravity is a Quantum theory, at a very short distance it may show a very complex "foamy" structure due to quantum fluctuation.

Use gamma ray beam from AGNs/GRBs to study the space-time structure

Energy 1000GeV ~  $10^{-16}E_{Pl}$ Distance 100~1000Mpc ( $10^{16-17}$ sec)

$$E_{Pl} = \sqrt{\frac{\hbar c^5}{G}} \approx 1.22 \times 10^{19} GeV$$

Visible time delay ~ 1 - 10 sec

Linear deviation:

$$\xi_1 < 0; \ v = c(1 - \frac{E}{M_{QG1}}); \ n(E) = 1 + \frac{E}{M_{QG1}}$$

Quadratic deviation:

$$\xi_1 = 0; \ \xi_2 < 0; \ v = c(1 - \frac{E^2}{M_{QG2}^2}); \ n(E) = 1 + \frac{E^2}{M_{QG2}^2}$$

![](_page_24_Picture_0.jpeg)

### AGN からのガンマ線短時間変動 Mrk501 by MAGIC, PKS 2155 by HESS

Mrk501(z=0.03) MAGIC observation

 $M_{QG1} > 0.26 \times 10^{18} GeV$ 

![](_page_24_Figure_4.jpeg)

PKS2155(z=0.116) HESS observation

#### $M_{QG1} > 0.72 \text{ x } 10^{18} \text{GeV}$

![](_page_24_Figure_7.jpeg)

With CTA, we can have ~10sec time resolution for the fast variation

![](_page_25_Picture_0.jpeg)

GRBs

![](_page_25_Figure_2.jpeg)

**UHECR Sources** 

![](_page_25_Figure_4.jpeg)

Starburst galaxies Galaxy mergers

![](_page_25_Picture_6.jpeg)

Clusters of galaxies

![](_page_25_Picture_8.jpeg)

**Dark Matter Annihilation** 

# For pulsar studies the low threshold energy is essential

#### MAGIC result: Published in Science in 2008

By measuring the spectrum around cutoff or at high energies is important to distinguish the emission model

Polar cap: double exponent Outer gap: simple exponent

![](_page_26_Picture_4.jpeg)

![](_page_26_Figure_5.jpeg)

![](_page_27_Picture_0.jpeg)

![](_page_27_Picture_1.jpeg)

## \_Hypernova!

![](_page_27_Picture_3.jpeg)

![](_page_27_Figure_4.jpeg)

![](_page_28_Picture_0.jpeg)

### Gamma ray emission process from DM Annihilation

#### **Dark Matter Annihilations**

![](_page_28_Picture_3.jpeg)

![](_page_28_Picture_4.jpeg)

![](_page_28_Figure_5.jpeg)

![](_page_29_Picture_0.jpeg)

# Complimentarity with the direct search experiment

![](_page_29_Figure_2.jpeg)

![](_page_30_Picture_0.jpeg)

### **Telescope structures:** HESS / MAGIC / HEGRA as prototypes

#### MAGIC: 17m

### HESS II: 28m

![](_page_30_Picture_4.jpeg)

#### H.E.S.S. 12m

![](_page_30_Picture_6.jpeg)

![](_page_31_Picture_0.jpeg)

![](_page_32_Picture_0.jpeg)

# 24m telescope design

![](_page_32_Figure_2.jpeg)

![](_page_32_Figure_3.jpeg)

![](_page_33_Picture_0.jpeg)

# 24m telescope design

![](_page_33_Picture_2.jpeg)

![](_page_33_Picture_3.jpeg)

![](_page_34_Picture_0.jpeg)

**SST Options** 

![](_page_34_Picture_2.jpeg)

![](_page_34_Picture_3.jpeg)

![](_page_35_Picture_0.jpeg)

# Mirrors must be cheap and good quality

![](_page_35_Picture_2.jpeg)

![](_page_35_Picture_3.jpeg)

Replication techniques probably more promising for large-scale low-cost production, compared to grinding / milling of mirrors

![](_page_35_Picture_5.jpeg)

![](_page_36_Picture_0.jpeg)

# High QE photosensors

SPECTRAL RESPONSE CHARACTERISTICS Metal Package PMT (TO-8 Type)

![](_page_36_Figure_3.jpeg)

![](_page_36_Figure_4.jpeg)

HPD with WLS

![](_page_36_Figure_5.jpeg)

![](_page_36_Picture_6.jpeg)

Hamamatsu & Photonis reach 45% QE ==> 40% PDE

GaAsP HPD: 50% PDE SiPM About 60% effective PDE will be realistic

![](_page_37_Picture_0.jpeg)

### Analogue Ring Samplers economic high performance readout

### DRS3 (--> DRS4)

12 x 1024 samples
up to 5 Gsamples/s
11.5 bit effective range
450 MHz bandwidth
25 mm<sup>2</sup>

#### SAM

2 x 256 samples up to 2 Gsamples/s 12 bit effective range 350 MHz bandwidth 11 mm<sup>2</sup>

![](_page_37_Figure_6.jpeg)

![](_page_37_Picture_7.jpeg)

# CTA

# Data center and operation center for CTA

### Challenges

- Huge data rates (~PBytes/yr)
- Observatory

![](_page_38_Picture_5.jpeg)

Automatic calibration and analysis for users

### Organization structure

- Array operation center
- Data handling and analysis center
- Science operation center
- Lots of man power (local technician, operation crew, professional data analyzers for the science operation)

![](_page_39_Picture_0.jpeg)

### **Recommendations and supports**

![](_page_39_Picture_2.jpeg)

![](_page_39_Picture_3.jpeg)

#### ASPERA Roadmap Magnificent Seven

![](_page_39_Figure_5.jpeg)

![](_page_39_Figure_6.jpeg)

#### High Priority project

#### High Priority project Ground based projects

![](_page_39_Figure_9.jpeg)

![](_page_39_Picture_10.jpeg)

### CTA is newly added in 2008 update

8 Infrastructures from Physics and eng

![](_page_40_Picture_0.jpeg)

# Summary

- 高エネルギーガンマ線天文学のめざましい発展
- IACT 技術の熟成 → CTA == 究極の IACT Array
  - 国際協力による次世代のインフラの構築
  - 目指す性能:
    - Broad band: 20–30GeV ~ 100TeV
    - 感度10倍: 10mCrab → ~1mCrab
    - 角分解能3倍: 1~2 arcmin
- 高エネルギー天文学の今後
  - 未だ多くの謎、銀河系内外宇宙線起源、ジェットでの粒子加速(例えば、短時間変動)
  - 高い時間分解能による フレアー時間変動
  - EBL の z 依存性
  - 新しいクラスの天体:パルサー、GRB、クラスター、未知天体、他
  - 基礎物理:相対論·量子重力効果、暗黒物質、宇宙論

#### タイムスケジュール

- 2009 末、Array Design を決定
- 2010-2013 プロトタイプ
- 2013-2018 建設
- AGIS 合流 in some day?
- Community, Funding Agency, EU からの強い支援