

2D $\mathcal{N} = (2, 2)$ SYM on the lattice — a status report —

Hiroshi Suzuki

Theoretical Physics Laboratory, RIKEN

Nov. 25, 2009 @ ICRR

- D. Kadoh and H.S., arXiv:0908.2274 [hep-lat], to appear in Phys. Lett. B
- I. Kanamori and H.S., Nucl. Phys. B 811 (2009) 420 [arXiv:0809.2856 [hep-lat]].
- I. Kanamori and H.S., Phys. Lett. B 672 (2009) 307 [arXiv:0811.2851 [hep-lat]].
- I. Kanamori, H.S. and F. Sugino, Phys. Rev. D 77 (2008) 091502 [arXiv:0711.2099 [hep-lat]].
- I. Kanamori, F. Sugino and H.S., Prog. Theor. Phys. 119 (2008) 797 [arXiv:0711.2132 [hep-lat]].

INTRODUCTION

Hiroshi Suzuki (RIKEN)

2D $\mathcal{N} = (2, 2)$ SYM on the lattice

Nov. 25, 2009 @ ICRR 2 / 43

Nonperturbative formulation of SUSY theories?

- widely believed that SUperSYmmetry play an important role in particle physics beyond SM
 - hierarchy (naturalness) problem
 - consistency of string theory (gauge/gravity correspondence)
- nonperturbative phenomena?
 - color confinement, bound states, spontaneous chiral symmetry breaking, quantum tunneling, ...
 - dynamical spontaneous SUSY breaking
- on nonperturbative formulation? lattice?

・ 同 ト ・ 日 ト ・ 日 日

SUSY on the lattice?

• manifest SUSY would be impossible, because

$$\left\{ oldsymbol{Q}^{\!\!\!A}_{lpha},(oldsymbol{Q}^{\!\!\!B}_{eta})^{\dagger}
ight\} = 2\delta^{AB}\sigma^m_{lpha\doteta}oldsymbol{P}_{m\doteta}$$

but *no* infinitesimal translations P_m defined for lattice fields

SUSY on the lattice?

• manifest SUSY would be impossible, because

$$\left\{ oldsymbol{Q}^{\mathcal{A}}_{lpha},(oldsymbol{Q}^{\mathcal{B}}_{eta})^{\dagger}
ight\} =2\delta^{\mathcal{AB}}\sigma^{m}_{lpha\dot{eta}}\mathcal{P}_{m}$$

but *no* infinitesimal translations P_m defined for lattice fields

• however, at least a linear combination ${\it Q}$ of ${\it Q}^{\it A}_{\alpha}$ and $({\it Q}^{\it B}_{\beta})^{\dagger}$ such that

$$\{Q,Q\}=2Q^2=0$$

could be realized even on the lattice

SUSY on the lattice?

• manifest SUSY would be *impossible*, because

$$\left\{ {oldsymbol{Q}}^{\!\!\!A}_lpha, ({oldsymbol{Q}}^{\!\!\!B}_eta)^\dagger
ight\} = 2 \delta^{\!\!\!\!AB} \sigma^m_{lpha \doteta} {oldsymbol{P}}_m$$

but *no* infinitesimal translations P_m defined for lattice fields

• however, at least a linear combination ${\it Q}$ of ${\it Q}^{\it A}_{\alpha}$ and $({\it Q}^{\it B}_{\beta})^{\dagger}$ such that

$$\{Q,Q\}=2Q^2=0$$

could be realized even on the lattice

• moreover, if the target continuum action S can be written as

$$S = QX$$

Q-invariance of S could be promoted to a lattice symmetry!

SUSY on the lattice? (cont'd)

- (partial) list of SUSY gauge theories with S = QX
 - ▶ 4D *N* = 4 SYM
 - ▶ 3D N = 8 SYM
 - ▶ 3D N = 4 SYM
 - ▶ 2D N = (8,8) SYM
 - ▶ 2D N = (4, 4) SYM
 - 2D $\mathcal{N} = (2, 2)$ SYM (+ matter multiplet)
- lattice formulations with an exact fermionic symmetry Q
 - Cohen, Endres, Kaplan, Katz, Ünsal (2002–)
 - Sugino (2003–)
 - Catterall (2004–)
 - D'Adda, Kanamori, Kawamoto, Nagata (2005–)
 - Damgaard, Matsuura
 - Kikukawa, Sugino
 - Kadoh, Sugino, H.S.

$2D \mathcal{N} = (2, 2) \text{ SYM}:$ CONTINUUM THEORY

Hiroshi Suzuki (RIKEN)

Nov. 25, 2009 @ ICRR 6/43

A ►

 $2D \mathcal{N} = (2,2) \text{ SYM}$

• action (dimensional reduction of 4D $\mathcal{N} = 1$ SYM to 2D)

$$S_{\text{2DSYM}} = \frac{1}{g^2} \int d^2 x \text{ tr} \left[\frac{1}{2} F_{MN} F_{MN} + \Psi^T C \Gamma_M D_M \Psi + \tilde{H}^2 \right]$$

SUSY

$$\begin{split} \delta A_{M} &= i\epsilon^{T}C\Gamma_{M}\Psi, \qquad \delta\Psi = \frac{i}{2}F_{MN}\Gamma_{M}\Gamma_{N}\epsilon + i\tilde{H}\Gamma_{5}\epsilon\\ \delta\tilde{H} &= -i\epsilon^{T}C\Gamma_{5}\Gamma_{M}D_{M}\Psi \end{split}$$

$$\bullet \text{ we set } r_{0} &= \begin{pmatrix} -i\sigma_{1} & 0\\ 0 & i\sigma_{1} \end{pmatrix}, \quad r_{1} &= \begin{pmatrix} i\sigma_{3} & 0\\ 0 & -i\sigma_{3} \end{pmatrix}, \quad r_{2} &= \begin{pmatrix} 0 & -i\\ -i & 0 \end{pmatrix}, \quad r_{3} &= c = \begin{pmatrix} 0 & 1\\ -1 & 0 \end{pmatrix}\\ \Psi^{T} &\equiv (\psi_{0}, \psi_{1}, \chi, \eta/2), \qquad \epsilon^{T} &\equiv -\left(\varepsilon^{(0)}, \varepsilon^{(1)}, \tilde{\varepsilon}, \varepsilon\right) \end{split}$$

and decompose

$$\delta \equiv \varepsilon^{(0)} Q^{(0)} + \varepsilon^{(1)} Q^{(1)} + \tilde{\varepsilon} \tilde{Q} + \varepsilon Q$$

Hiroshi Suzuki (RIKEN)

$2D \mathcal{N} = (2,2) \text{ SUSY algebra}$

• SUSY algebra in this spinor basis,

$$\begin{split} & Q^2 = \tilde{Q}^2 = \delta_{\phi}, \\ & (Q^{(0)})^2 = (Q^{(1)})^2 = -\delta_{\overline{\phi}} \\ & \{Q, Q^{(\mu)}\} = -2i\partial_{\mu} + 2\delta_{A_{\mu}}, \\ & \{\tilde{Q}, Q^{(\mu)}\} = -\epsilon_{\mu\nu} \left(-2i\partial_{\nu} + 2\delta_{A_{\nu}}\right) \\ & \{Q, \tilde{Q}\} = \{Q^{(0)}, Q^{(1)}\} = 0 \end{split}$$

where

$$\phi \equiv A_2 + iA_3, \qquad \bar{\phi} = A_2 - iA_3, \qquad \epsilon_{01} \equiv 1$$

and δ_{φ} denotes the infinitesimal gauge transformation with the parameter φ : $\delta_{\varphi} = [\varphi, \cdot]$ for matter fields and $\delta_{\varphi} A_{\mu} = i D_{\mu} \varphi$

• *Q*-transformation is nilpotent, on gauge invariant combinations:

$$Q^2 = \delta_\phi \simeq 0$$

Q-transformation

• **Q**-transformation (
$$H \equiv \tilde{H} + iF_{01}$$
)

$$\begin{array}{ll} QA_{\mu} = \psi_{\mu}, & Q\psi_{\mu} = iD_{\mu}\phi \\ Q\phi = 0 & \\ Q\bar{\phi} = \eta, & Q\eta = \left[\phi, \bar{\phi}\right] \\ Q\chi = H, & QH = \left[\phi, \chi\right] \end{array}$$

is nilpotent on gauge invariant combinations

 $Q^2 = \delta_\phi \simeq 0$

• moreover, the continuum action is Q-exact

$$S_{\text{2DSYM}} = \frac{Q}{g^2} \int d^2 x \text{ tr} \left[-2i\chi F_{01} + \chi H + \frac{1}{4}\eta \left[\phi, \bar{\phi}\right] - i\psi_{\mu} D_{\mu} \bar{\phi} \right]$$

R-symmetries

- $U(1)_A$ symmetry (\leftrightarrow 2-3 plane rotation in 4D) $\Psi \rightarrow \exp(\alpha \Gamma_2 \Gamma_3) \Psi, \quad \phi \rightarrow \exp(2i\alpha) \phi, \quad \overline{\phi} \rightarrow \exp(-2i\alpha) \overline{\phi}$
- $U(1)_V$ symmetry ($\leftarrow U(1)_R$ symmetry in 4D SYM)

$$\Psi \to \exp(i\alpha\Gamma_5) \Psi$$

S: $\Psi \to i\Gamma_5 \Psi$, $(\alpha = \pi/2)$

- - $R: \Psi \to i\Gamma_2 \Psi, \qquad \phi \to -\overline{\phi}, \qquad \overline{\phi} \to -\phi, \qquad H \to -H + 2iF_{01}$

a useful relation

 $Q^{(0)} = RSQS^{-1}R^{-1}, \qquad Q^{(1)} = RQR^{-1}, \qquad \tilde{Q} = SQS^{-1}$

Is this theory trivial? Not quite!

- This is a "toy" field theory, but no obvious low-energy description
- in 2D, no SSB of bosonic global symmetries (no chiral lagrangian)
- super-renormalizable, but perturbation theory in infinite volume suffers from severe IR divergence
- gauge coupling g simply provides a mass scale, like Λ_{QCD}
- no expansion parameter at low energies except possibly the number of colors N_c (and 1/N_c expansion is nontrivial)
- there exist flat directions $[\phi, \overline{\phi}] = 0$, but (probably) no vacuum modulus in 2D
- the Witten index is unknown (SSUSYB?, Hori-Tong)

$2D \mathcal{N} = (2, 2) \text{ SYM}:$ LATTICE FORMULATION

Hiroshi Suzuki (RIKEN)

2D $\mathcal{N} = (2, 2)$ SYM on the lattice

 □ > < ≥ > < ≥ > < ≥ > < ≥ < ≥ < </td>

 Nov. 25, 2009 @ ICRR
 12 / 43

Sugino's lattice formulation

• 2D lattice (a: lattice spacing)

$$\Lambda = \left\{ x \in a\mathbb{Z}^2 \mid 0 \le x_0 < \beta, \ 0 \le x_1 < L \right\}$$

• lattice action ($U_{\mu}(x)$: link variables)

$$S_{2\text{DSYM}}^{\text{LAT}} = Q \frac{1}{a^2 g^2} \sum_{x \in \Lambda} \text{tr} \left[-i\chi(x)\hat{\Phi}(x) + \chi(x)H(x) + \frac{1}{4}\eta(x) \left[\phi(x), \bar{\phi}(x)\right] - i\sum_{\mu=0}^{1} \psi_{\mu}(x) \left(U_{\mu}(x)\bar{\phi}(x+a\hat{\mu})U_{\mu}(x)^{-1} - \bar{\phi}(x)\right) \right]$$

where the lattice field strength $\hat{\Phi}(x)$ ($\simeq 2F_{01}$) is given basically by the plaquette

$$\hat{\Phi}(x) \simeq -iU_0(x)U_1(x+a\hat{0})U_0(x+a\hat{1})^{-1}U_1(x)^{-1} + \text{h.c.}$$

Hiroshi Suzuki (RIKEN)

Sugino's lattice formulation (cont'd)

• lattice *Q*-transformation

$$\begin{aligned} QU_{\mu}(x) &= i\psi_{\mu}(x)U_{\mu}(x) \\ Q\psi_{\mu}(x) &= i\psi_{\mu}(x)\psi_{\mu}(x) - i\left(\phi(x) - U_{\mu}(x)\phi(x + a\hat{\mu})U_{\mu}(x)^{-1}\right) \\ Q\phi(x) &= 0 \\ Q\bar{\phi}(x) &= \eta(x), \qquad Q\eta(x) = \left[\phi(x), \bar{\phi}(x)\right] \\ Q\chi(x) &= H(x), \qquad QH(x) = \left[\phi(x), \chi(x)\right] \end{aligned}$$

is nilpotent on gauge invariant combinations on the lattice

 $Q^2 = \delta_\phi \simeq 0$

• Q is a manifest lattice symmetry, $QS_{2DSYM}^{LAT} = 0$

• $U(1)_A$ is another manifest symmetry $\Psi(x)^T \equiv (\psi_0(x), \psi_1(x), \chi(x), \eta(x)/2)$ $\Psi(x) \rightarrow \exp(\alpha \Gamma_2 \Gamma_3) \Psi(x),$ $\phi(x) \rightarrow \exp(2i\alpha) \phi(x), \quad \bar{\phi}(x) \rightarrow \exp(-2i\alpha) \bar{\phi}(x)$

Restoration of full SUSY (and *R* symmetries)?

- this lattice formulation possesses manifest lattice symmetries Q and U(1)_A
- but how about other $Q^{(0)}$, $Q^{(1)}$, \widetilde{Q} ? (and $U(1)_V$, \mathbb{Z}_2)?
- the best thing we can hope is that these are restored in the continuum limit $a \rightarrow 0$
- does this really realize? the most important issue to be settled before going into physics
- perturbative argument on the basis of the effective action (Sugino; cf. Kaplan et al.)

RESTORATION of SUSY?

Hiroshi Suzuki (RIKEN)

Nov. 25, 2009 @ ICRR 16/43

A ►

What is the most useful characterization of SUSY restoration?

- scalar 2-point function? (< not gauge invariant)</p>
- (local) SUSY Ward-Takahashi (WT) identity would be best
- in the target continuum theory, we expect

$$\partial_{\mu} \langle \boldsymbol{s}_{\mu}(\boldsymbol{x}) \mathcal{O}(\boldsymbol{y}_{1}, \dots, \boldsymbol{y}_{n}) \rangle \qquad \boldsymbol{s}_{\mu}: \text{ supercurrent} \\ = \frac{\mu^{2}}{g^{2}} \langle \boldsymbol{f}(\boldsymbol{x}) \mathcal{O}(\boldsymbol{y}_{1}, \dots, \boldsymbol{y}_{n}) \rangle - \boldsymbol{i} \frac{\delta}{\delta \epsilon(\boldsymbol{x})} \langle \mathcal{O}(\boldsymbol{y}_{1}, \dots, \boldsymbol{y}_{n}) \rangle,$$

in the presence of a SUSY breaking scalar mass term

$$S_{\rm mass} = \frac{\mu^2}{g^2} \int d^2 x \, {\rm tr} \left[\bar{\phi} \phi \right], \qquad f \equiv 2iC \left(\Gamma_{\uparrow} \, {\rm tr} \left[\phi \Psi \right] + \Gamma_{\downarrow} \, {\rm tr} \left[\bar{\phi} \Psi \right] \right)$$

and

$$\Gamma_{\uparrow,\downarrow}\equivrac{i}{2}\left(\Gamma_{2}\mp i\Gamma_{3}
ight)$$

SUSY WT identity in the continuum

• the (local) SUSY WT identity

$$egin{aligned} &\partial_{\mu} \left\langle m{s}_{\mu}(x) \, \mathcal{O}(m{y}_1, \dots, m{y}_n)
ight
angle \ &= rac{\mu^2}{g^2} \left\langle f(x) \, \mathcal{O}(m{y}_1, \dots, m{y}_n)
ight
angle - i rac{\delta}{\delta \epsilon(x)} \left\langle \mathcal{O}(m{y}_1, \dots, m{y}_n)
ight
angle \end{aligned}$$

holds, irrespective of

1

- boundary conditions (: used localized SUSY transformations)
- ► spontaneous SUSY breaking (⇒ Nambu-Goldstone fermion)

provided that the regularization respects SUSY

- is the WT identity reproduced in the continuum limit $a \rightarrow 0$?
- renormalization/mixing of composite operators?

A = A = A = E < 000</p>

SUSY WT identity on the lattice?

first, we want to define lattice analogues of Q⁽⁰⁾, Q⁽¹⁾ and Q
 , such that

$$(Q^{(0)})^2 = (Q^{(1)})^2 = \tilde{Q}^2 = 0$$

and, under the $U(1)_A$ transformation,

$$(\mathcal{Q}^{(0)}, \mathcal{Q}^{(1)}, \tilde{\mathcal{Q}}, \mathcal{Q}) \rightarrow (e^{-i\alpha}\mathcal{Q}^{(0)}, e^{-i\alpha}\mathcal{Q}^{(1)}, e^{i\alpha}\tilde{\mathcal{Q}}, e^{i\alpha}\mathcal{Q})$$

 these can be accomplished, with the help of lattice analogues of S and R, as

$$Q^{(0)} \equiv RSQS^{-1}R^{-1}, \qquad Q^{(1)} \equiv RQR^{-1}, \qquad \tilde{Q} \equiv SQS^{-1}$$

• furthermore, using representations

$$egin{aligned} S_{ ext{2DSYM}}^{ ext{LAT}} &= QX \ &= Q^{(0)}RSX + (1-RS)\,S_{ ext{2DSYM}}^{ ext{LAT}} \ &= Q^{(1)}RX + (1-R)\,S_{ ext{2DSYM}}^{ ext{LAT}} \ &= ilde{Q}SX + (1-S)\,S_{ ext{2DSYM}}^{ ext{LAT}} \end{aligned}$$

SUSY WT identity on the lattice

• we have an identity on the lattice, $\partial^*_{\mu}g(x) \equiv (1/a)(g(x) - g(x - a\hat{\mu}))$

$$\begin{array}{ll} \partial^*_{\mu} \left\langle s_{\mu}(x) \mathcal{O}(y_1, \dots, y_n) \right\rangle & s_{\mu}(x) \text{: lattice supercurrent} \\ &= \frac{\mu^2}{g^2} \left\langle f(x) \mathcal{O}(y_1, \dots, y_n) \right\rangle - i \frac{\delta}{\delta \epsilon(x)} \left\langle \mathcal{O}(y_1, \dots, y_n) \right\rangle \\ &+ \left\langle B(x) \mathcal{O}(y_1, \dots, y_n) \right\rangle, & B(x) = O(a), \end{array}$$

where $f(x) \equiv 2iC(\Gamma_{\uparrow} \operatorname{tr}[\phi(x)\Psi(x)] + \Gamma_{\downarrow} \operatorname{tr}[\bar{\phi}(x)\Psi(x)])/a^{5/2}$, s.t., under the $U(1)_A$ transformation and

 $s_{\mu}(x) \rightarrow \exp\left(-lpha \Gamma_2 \Gamma_3\right) s_{\mu}(x), \qquad B(x) \rightarrow \exp\left(-lpha \Gamma_2 \Gamma_3\right) B(x)$

• then the crucial issue is

$$B(x)^{T} = (*, *, *, 0) \xrightarrow{a \to 0} 0?$$

Argument based on the formal perturbation theory

- *B*(*x*) is *O*(*a*), but could become *O*(1) through radiative corrections
- we assume that \mathcal{O} s are gauge invariant operators
- we further assume that $x \neq y_i$ (i = 1, ..., n)
- B(x) can then mix with gauge invariant, fermionic, mass dimension ≤ 5/2, U(1)_A covariant operators
- assuming that the gauge group is $G = SU(N_c)$ and B(x) can be cancelled by local counterterms (i.e., SUSY has no intrinsic anomaly),

$$B(x) \xrightarrow{a \to 0} \text{const.} C\left(\Gamma_{\uparrow} \operatorname{tr} [\phi \Psi] + \Gamma_{\downarrow} \operatorname{tr} [\bar{\phi} \Psi]\right) = \text{const.} \begin{pmatrix} * \\ * \\ * \\ -\operatorname{tr} \{\phi \eta/2\} \end{pmatrix}$$

• but, because of lattice *Q*-symmetry

$$B(x)^T = (*, *, *, \mathbf{0}) \Rightarrow B(x) \xrightarrow{a \to 0} \mathbf{0}$$

Lattice SUSY WT identity in the continuum limit

• So, in the continuum limit, when $x \neq y_i$ (i = 1, ..., n)

$$\partial_{\mu} \langle s_{\mu}(x) \mathcal{O}(y_1, \ldots, y_n) \rangle = \frac{\mu^2}{g^2} \langle f(x) \mathcal{O}(y_1, \ldots, y_n) \rangle$$

and SUSY is automatically restored!

• For other choices of supercurrent $s'_{\mu}(x)$ such that $\Delta s_{\mu}(x) \equiv s'_{\mu}(x) - s_{\mu}(x) = O(a)$ is gauge invariant,

$$\Delta s_{\mu}(x) \xrightarrow{a o 0}$$
 const.*M* tr [Ψ] $\equiv 0$, for $G = SU(N_c)$

and the SUSY WT identity holds also for $s'_{\mu}(x)$:

$$\partial_{\mu}\left\langle s_{\mu}^{\prime}(x)\mathcal{O}(y_{1},\ldots,y_{n})
ight
angle =rac{\mu^{2}}{g^{2}}\left\langle f(x)\mathcal{O}(y_{1},\ldots,y_{n})
ight
angle$$

 by perturbative argument, one sees that s_μ(x) and f(x) are finite (and thus correctly normalized) operators

Hiroshi Suzuki (RIKEN)

2D $\mathcal{N} = (2, 2)$ SYM on the lattice

Explicit confirmation of the SUSY WT identity

- the argument so far is rather formal, because perturbation theory (in massless theory) in infinite volume suffers from IR divergence
- we may avoid the IR divergence by putting the system into a finite box of size L
- perturbation theory then becomes an expansion w.r.t. *Lg*, i.e., we have a small volume expansion (IR divergence is reproduced as $L \rightarrow \infty$)

We have two choices:

- can use perturbative expansion for small volume $Lg \ll 1$
- for large physical volume Lg ≥ 1, perturbation theory is useless.
 use instead the Monte Carlo simulation

Semi-perturbative expansion

however, since

$$S_{2\mathsf{DSYM}}^{\mathsf{LAT}} = rac{N^2}{a^2 g^2} \operatorname{tr} \left[-rac{1}{2} [ilde{A}_{\mu}(0), ilde{A}_{
u}(0)]^2 + ilde{\Psi}(0)^T C \Gamma_{\mu} i [ilde{A}_{\mu}(0), ilde{\Psi}(0)] + \cdots \right]$$

constant modes do not allow a perturbative expansion and a naive order counting is modified:

$$\Box = \tilde{\Psi}(0) = O((ag)^{3/4})$$
 $O = \tilde{A}_{\mu}(0) \text{ or } \tilde{\phi}(0) = O((ag)^{1/2})$

 semi-perturbative analysis of a scalar 2-point function in Kaplan's model (Onogi-Takimi, PRD 72 (2005))

- perturbative integration over non-zero momentum modes
- nonperturbative numerical integration over constant modes

Semi-perturbative expansion (cont'd)

• we take a dimension 1/2 operator

$$\mathcal{O}(y) = f_{\nu}(y) \equiv -\frac{1}{2g^2} \Gamma_{\nu} C^{-1} f(y)$$

and want to see whether the SUSY WT identity

$$\partial_{\mu} \left\langle s_{\mu}(x) f_{\nu}(y) \right\rangle = rac{\mu^2}{g^2} \left\langle f(x) f_{\nu}(y) \right\rangle, \qquad ext{for } x
eq y$$

holds or not

• the first nontrivial order turns to be $O((ag)^{3/2})$ and, schematically,

$$\partial_{\mu}$$
 D--- \bigcirc ---D = $\frac{\mu^2}{g^2}$ D--- \bigcirc ---D + C D----D

where C denotes the scalar one-loop self energy

Semi-perturbative expansion (cont'd)

• somewhat lengthy one-loop calculation yields ($N \equiv L/a$, λ is the gauge parameter)

$$C = N_c \frac{2}{N^2} \sum_{(n_0, n_1) \neq (0, 0)} \left[\frac{1}{2} \left(1 + \frac{1}{\lambda} \right) \frac{1}{\hat{k}^2} + \frac{1}{2} \left(1 - \frac{1}{\lambda} \right) \frac{1}{\hat{k}^2 + a^2 \mu^2} - \frac{1}{\hat{k}^2} \right]$$

where

$$\hat{k}^2 \equiv \sum_{\mu=0}^1 (\hat{k}_{\mu})^2, \qquad \hat{k}_{\mu} \equiv 2\sin{\frac{k_{\mu}}{2}},$$

and $k_{\mu} \equiv \frac{2\pi n_{\mu}}{N}, n_{\mu} = 0, 1, 2, \dots, N-1$

• we may further neglect $a^2\mu^2 = (\mu^2/g^2)a^2g^2$ in the denominator and then

$\mathcal{C} = \mathbf{0}$

 the SUSY WT identity really holds in the first nontrivial order in the semi-perturbative expansion

Hiroshi Suzuki (RIKEN)

Monte Carlo simulation (brief sketch)

- simulation with a dynamical Majorana spinor ($N_f = 1/2$)
- partition function

$$\mathcal{Z} = \mathcal{N} \int [d(\mathsf{fields})] \; e^{-\mathcal{S}} = \mathcal{N}' \int [d(\mathsf{bosonic fields})] \; e^{-\mathcal{S}_B} \mathsf{Pf}\{D\}$$

o pseudo-fermion

$$\begin{aligned} \mathsf{Pf}\{D\} &= e^{i\operatorname{Arg}\mathsf{Pf}\{D\}}(\det D^{\dagger}D)^{1/4} \\ &= e^{i\operatorname{Arg}\mathsf{Pf}\{D\}}\int \left[d\varphi\right]\left[d\overline{\varphi}\right] \, e^{-\overline{\varphi}(D^{\dagger}D)^{-1/4}\varphi} \end{aligned}$$

• rational approximation (RHMC)

$$x^{-1/4} \simeq \alpha_0 + \sum_{i=1}^N \frac{\alpha_i}{x + \beta_i}$$

Remez algorithm, multi-shift solver, ...

Simulation parameters

- G = SU(2), antiperiodic BC, Lg = 1.414, $\beta = 2L$
- Lattice sizes

$$12\times 6, \quad 16\times 8, \quad 20\times 10$$

Lattice spacings

$$ag = 0.2357, 0.1768, 0.1414$$

Scalar masses

 $\mu^2/g^2 = 0.04, \quad 0.25, \quad 0.49, \quad 1.0, \quad 1.69$

Number of uncorrelated configurations

800-1800

 $\bullet ~ \sim 20,000 \, \text{CPU} \cdot \text{hour}$

Hiroshi Suzuki (RIKEN)

Monte Carlo confirmation! (Kanamori-H.S., NPB 811 (2009))

Continuum limit of the ratio

$$\frac{\partial_{\mu}\left\langle (s'_{\mu})_{i}(x)(f_{0})_{i}(y)\right\rangle}{\left\langle (f)_{i}(x)(f_{0})_{i}(y)\right\rangle} \xrightarrow{a \to 0} \frac{\mu^{2}}{g^{2}} \qquad \text{for } x \neq y?$$

Figure: i = 1 (+), i = 2 (×), i = 3 (□), i = 4 (■)

Hiroshi Suzuki (RIKEN)

Monte Carlo confirmation (cont'd)

- it appears that, at least for $\mu^2/g^2 > 0$, with antiperiodic BC, the SUSY WT identity holds in the continuum limit
- breaking of SUSY (and other symmetries) owing to lattice regularization disappears
- the target theory (2D $\mathcal{N} = (2, 2)$ SYM with a SUSY breaking scalar mass) seems to be realized in the continuum limit
- this is the first (and so far unique) example in lattice gauge theory in which the restoration of SUSY was observed!

PHYSICS

Hiroshi Suzuki (RIKEN)

2D $\mathcal{N} = (2, 2)$ SYM on the lattice

<
 < □ > < 三 > < 三 > 三 = のへへ
 Nov. 25, 2009 @ ICRR 31 / 43

Correlation functions with power-like behavior

- this system has no mass gap (Witten) (
 — 't Hooft anomaly matching condition)
- more definitely, on ℝ² (Fukaya-Kanamori-H.S.-Hayakawa-Takimi, PTP 116 (2007))

$$\begin{split} &-\frac{i}{2} \langle j_{\mu}(x) \epsilon_{\nu\rho} j_{5\rho}(0) \rangle \\ &= \frac{1}{4\pi} (N_c^2 - 1) \int \frac{d^2 p}{(2\pi)^2} e^{i\rho x} \left\{ -\frac{1}{\rho^2} (p_{\mu} p_{\nu} - \epsilon_{\mu\rho} \epsilon_{\nu\sigma} p_{\rho} p_{\sigma}) + \widetilde{c} \delta_{\mu\nu} \right\} \\ &= \frac{1}{4\pi} (N_c^2 - 1) \left\{ \frac{1}{\pi} \frac{1}{(x^2)^2} (x_{\mu} x_{\nu} - \epsilon_{\mu\rho} \epsilon_{\nu\sigma} x_{\rho} x_{\sigma}) + \widetilde{c} \delta_{\mu\nu} \delta^2(x) \right\}, \end{split}$$

where j_{μ} and $j_{5\rho}$ are $U(1)_V$ and $U(1)_A$ currents, respectively (\tilde{c} is ambiguity in operator definition)

Can we see this massless bosonic state?

• power-like behavior on \mathbb{R}^2

$$-rac{i}{2}\left< j_0(x)\epsilon_{0
ho}j_{5
ho}(0)
ight> = rac{3}{4\pi^2}rac{1}{(x_0)^2},$$

for $N_c = 2$ along $x_1 = 0$

Figure: IV: antiperiodic BC, 20×16 , ag = 0.1414, $\mu^2/g^2 = 0.25$

Hiroshi Suzuki (RIKEN)

Almost degenerated fermionic state a (global) SUSY WT identity

$$\langle (s_0)_i(x)(f_0)_i(0) \rangle = -\frac{i}{2} \langle j_0(x) \epsilon_{0\rho} j_{5\rho}(0) \rangle$$

$$\underbrace{ \begin{array}{c} O(g^2); \text{ no massless singularity} \\ \hline - \left\langle j_0(x) \epsilon_{0\rho} \frac{1}{g^2} \operatorname{tr} \left\{ A_3(0) F_{\rho 2}(0) - A_2(0) F_{\rho 3}(0) \right\} \right\rangle$$

(this follows from $\delta \langle j_{\mu}(x) f_{\nu}^{T}(0) \rangle = 0$, neglecting μ^{2} and aPBC)

12 N A 12

Static potential between charges in fund. rep.

 static potential between charges in the fundamental representation V(R)/g

$$-\ln \left\{ W(T,R) \right\} = V(R)T + c(R)$$

 this confining behavior appears distinct with a conjecture in (Armoni-Frishman-Sonnenschein, PLB 449 (1999))

Hiroshi Suzuki (RIKEN)

2D $\mathcal{N} = (2, 2)$ SYM on the lattice

Nov. 25, 2009 @ ICRR 35 / 43

Static potential (cont'd)

 static potential between charges in the fundamental representation V(R)/g for various scalar masses

 the broken line: (Gross-Klebanov-Matytsin-Smilga, NPB 461 (1996)) for $\mu^2/q^2 \to \infty$

Hiroshi Suzuki (RIKEN)

Hamiltonian density: order parameter of SSUSYB!

• in the lattice SUSY WT identity, set

$$\mathcal{O}(\boldsymbol{y}) = \left(\boldsymbol{s}_{0}^{\prime}\right)_{i=1}(\boldsymbol{y}),$$

where i = 1 spinor component corresponds to the $Q^{(0)}$ -transformation

• then the lattice WT identity (for $\mu^2 \rightarrow 0$) provides SUSY current algebra among correctly normalized current operators (recall that $B_{i=4}(x) = 0$)

$$\partial_{\mu}^{*}\left\langle \left(\boldsymbol{s}_{\mu}\right)_{i=4}\left(\boldsymbol{x}\right)\left(\boldsymbol{s}_{0}^{\prime}\right)_{i=1}\left(\boldsymbol{y}\right)\right\rangle =i\frac{1}{a^{2}}\delta_{\boldsymbol{x},\boldsymbol{y}}\left\langle \boldsymbol{Q}\left(\boldsymbol{s}_{0}^{\prime}\right)_{i=1}\left(\boldsymbol{x}\right)\right\rangle$$

the right-hand side can be regarded as the hamiltonian density

$$\left\langle \mathbf{Q}\left(\mathbf{s}_{0}^{\prime}\right)_{i=1}\left(\mathbf{x}\right)
ight
angle = 2\left\langle \mathcal{H}(\mathbf{x})
ight
angle \quad \Leftrightarrow \quad \left\{ \mathbf{Q},\mathbf{Q}^{\left(0
ight)}
ight\} = -2i\partial_{0}+2\delta_{\mathcal{A}_{0}}$$

 this is the prescription for the hamiltonian density, advocated in (Kanamori-Sugino-H.S., PRD 77 (2008))

Hiroshi Suzuki (RIKEN)

Vacuum energy density \mathcal{E}_0 (Kanamori, PRD 79 (2009))

• can be obtained from the zero temperature limit $\beta \to \infty$ of $\langle \mathcal{H} \rangle$

$$\mathcal{E}_0/g^2 = 0.09 \pm 0.09(ext{sys})^{+0.10}_{-0.08}(ext{stat})$$

• it appears that the dynamical spontaneous SUSY breaking in this system (Hori-Tong, JHEP 0705 (2007)) is unlikely...

Hiroshi Suzuki (RIKEN)

2D $\mathcal{N} = (2, 2)$ SYM on the lattice

Nov. 25, 2009 @ ICRR 38 / 43

Summary

 although our research so far is on a 2D SUSY gauge theory, we have really realized the steps

nonperturbative formulation of SUSY gauge theory

confirmation of SUSY restoration in the continuum limit

study of nonperturbative phenomena from first principles

Summary

• further targets

- ▶ 2D *N* = (2, 2) SQCD
- (2D N = (2, 2) WZ model)
- ▶ 2D N = (4,4) SYM
- 4D $\mathcal{N} = 1$ SYM

Perturbative argument (Sugino; cf. Kaplan et al.)

- in the continuum limit, SUSY breaking owing to the lattice regularization should be able to be removed by *local* counterterms (i.e., absence of SUSY anomaly)
- possible local term in the effective action in the ℓ -loop

$$a^{p+2\ell-4}(g^2)^{\ell-1}\int d^2x\,arphi^a\partial^b\psi^{2c},\quad p\equiv a+b+3c\geq 0$$

(up to some powers of ln a)

- operators with p + 2ℓ 4 ≤ 0 survive in the continuum limit a → 0.
 it is enough to consider ℓ = 0, 1, 2
- for $\ell = 0$, the continuum limit coincides with the target theory

Perturbative argument (Sugino; cf. Kaplan et al.)

• for $\ell = 1$, only p = 0, 1, 2 could survive

 $p = 0 \Rightarrow 1 \text{ (identity operator)} \leftarrow \text{ no dynamical effect}$ $p = 1 \Rightarrow \text{tr}\{\phi\} = \text{tr}\{\bar{\phi}\} = 0$ $p = 2 \Rightarrow \text{tr}\{F_{01}\} = \text{tr}\{D_{\mu}\phi\} = \text{tr}\{D_{\mu}\bar{\phi}\} = \text{tr}\{H\} = 0$ $\Rightarrow \text{tr}\{\phi\phi\}, \text{tr}\{\bar{\phi}\bar{\phi}\} \leftarrow \text{ prohibited by } U(1)_{A}$ $\Rightarrow \text{tr}\{\bar{\phi}\phi\} \leftarrow \text{ prohibited by the } Q \text{ symmetry}$

• for $\ell = 2$, only p = 0 is marginal (i.e., the identity 1)

Derivation of the lattice identity

identity

$$\int [d(\text{fields})] \, \delta \left[e^{-S_{\text{2DSYM}}^{\text{LAT}} - S_{\text{mass}}^{\text{LAT}}} \, \mathcal{O}(y_1, \dots, y_n) \right] = 0$$

and thus

$$\left\langle \frac{\delta}{\delta \epsilon(\mathbf{x})} (S_{2\text{DSYM}}^{\text{LAT}} + S_{\text{mass}}^{\text{LAT}}) \mathcal{O}(\mathbf{y}_1, \dots, \mathbf{y}_n) \right\rangle = \left\langle \frac{\delta}{\delta \epsilon(\mathbf{x})} \mathcal{O}(\mathbf{y}_1, \dots, \mathbf{y}_n) \right\rangle$$

setting

$$\delta S_{\text{2DSYM}}^{\text{LAT}} \equiv -ia^2 \sum_{x \in \Lambda} \epsilon(x)^T \left[-\partial_{\mu}^* s_{\mu}(x) + B(x) \right]$$
$$\delta S_{\text{mass}}^{\text{LAT}} \equiv -ia^2 \sum_{x \in \Lambda} \epsilon(x)^T \frac{\mu^2}{g^2} f(x)$$

we have the lattice SUSY WT identity

$$\partial_{\mu}^{*} \langle s_{\mu}(x) \mathcal{O}(y_{1}, \dots, y_{n}) \rangle = \frac{\mu^{2}}{g^{2}} \langle f(x) \mathcal{O}(y_{1}, \dots, y_{n}) \rangle - i \frac{\delta}{\delta \epsilon(x)} \langle \mathcal{O}(y_{1}, \dots, y_{n}) \rangle + \langle B(x) \mathcal{O}(y_{1}, \dots, y_{n}) \rangle$$

Hiroshi Suzuki (RIKEN)