# 初代星形成における乱流磁場の増幅と 円盤分裂への影響 Kenji Eric Sadanari (Konan U.) Kazuyuki Omukai(Tohoku U.) Kazuyuki Sugimura(Hokkaido U.)

Tomoaki Matsumoto(Hosei U.) Kengo Tomida(Tohoku U.)





# Outlines

### 1. first star formation w/o magnetic field

### 2. magnetic fields in first star forming region

- generation & amplification of B-field

### 3. Magnetic effects on first star formation (Sadanari et al. 2024)

- turbulent B-fields effects on disk fragmentation
  - magnetic pressure
  - magnetic torques
  - $\cdot$  MHD outflow

### 4. Summary

# first star formation

# **first (Pop III) stars** starting points of the formation of astronomical objects



### The properties of first stars determine the evolution of the universe

reionization by stellar radiation, metal enrichment by SNe, seeding BHs, metal poor stars, etc.

### **Big goal**

### determining the nature of first stars

 mass, number of stars, spin, multiplicity, binary separation, eccentricity, etc.

### → we need to perform numerical simulations



## **first (Pop III) stars** starting points of the formation of astronomical objects



turbulence & seed B-field

# first star formation process



 • quenching of gas accretion due to ionization feedback
 → stellar mass



# collapse phase





### ✓ accretion rate $\dot{M} \sim M_{\rm J}/t_{\rm ff} \sim c_{\rm s}^3/G \sim T^{3/2}$

→ 
$$\begin{pmatrix} \text{Pop III (T~200 K): } 10^{-3} M_{\odot}/\text{yr} \\ \text{Pop I} (T~10 K): 10^{-6} M_{\odot}/\text{yr} \end{pmatrix}$$

Accretion rate is high in the primordial case.

# accretion phase



high accretion rate

### ✓ massive star

# $N_{\text{star}} = \frac{100}{100} + \frac{100}{100} +$

### binary/multiple system



High accretion rate easily leads to disk fragmentation.
 →multiple systems w/ massive binaries.

 $\rightarrow$  can be progenitors of observed BH mergers

# disk fragmentation



Hydrodynamics simulations suggest that number of protostars continues to increase in time.  $\rightarrow$  first stars tend to form as a higher-order multiple system.

→ Low-mass first stars can also form.

How does this change in the presence of B-fields ?

### magnetic fields in the first star-forming regions

- generation of seed magnetic fields
- magnetic amplification

# seed magnetic field in the early universe

### Observational constrains

Gamma rays observation of blazars

 $B > 10^{-20} G$  @ intergalactic voids (Takahashi+2012)

### ✓ Theory

### **Cosmological process**

- during electroweak & QCD phase transition:  $B \sim 10^{-65} - 10^{-9} \text{ G} \rightarrow \text{depend on the model}$
- Second order fluctuations during recombination era (Saga+2015)
  - $B \sim 10^{-24} \text{ G}$ @ few Mpc

### Astronomical process

- $\rightarrow$  Biermann battery mechanism
  - Galaxy formation (Kulsrud+1997)
  - Reionization (Gnedin+2005)
  - SNe explosion (Hanayama+2005)
  - Virialization shock during minihalo formation
     (Xu+2008)
  - Radiation forces (Langer+2003; Doi&Susa2011)
  - Streaming of cosmic rays (Ohira 2021)

 $\rightarrow B \sim 10^{-21} - 10^{-16} \ \mathrm{G}$  at scale of astronomical object



# magnetic field evolution in minihalos

### step 1.

### Biermann-Battery機構による種磁場生成

- Initial Biermann
- Turbulent Biermann

### step 2.

### 乱流ダイナモ+重力圧縮による磁場増幅

- Kinematic dynamo phase
- Nonlinear dynamo phase
- compression phase

induction equation

$$\frac{\partial \vec{B}}{\partial t} = \nabla \times (\vec{v} \times \vec{B}) - \frac{m_{a}c}{e(1+\chi)} \left(\frac{\nabla \rho \times \nabla p}{\rho^{2}}\right) + \eta \nabla^{2} \vec{B}$$

$$(\chi : \text{\text{min}} \ \text{\text{min}} \ \text{\text{min}}, \ m_{a} : \text{\text{min}} \ \text{\text{min}}$$



# generation of seed magnetic fields

### Initial Biermann



# generation of seed magnetic fields

### Turbulent Biermann



# amplification of seed magnetic fields

### Kinematic dynamo phase

$$\frac{\partial \vec{B}}{\partial t} = \nabla \times (\vec{v} \times \vec{B}) - \frac{m_{a}c}{e(1+\chi)} \left( \frac{\nabla \rho \times \nabla p}{\rho^{2}} \right) + \eta \nabla^{2} \vec{B} \qquad B [G]$$
  
磁場増幅: 圧縮 + ダイナモ
(重力,衝撃波) (乱流,回転) 10<sup>-4</sup>

$$\int B \propto \rho^{2/3} \qquad \downarrow 10^{-4}$$

$$e_{mag.g} = \frac{B_{o}^{2}}{8\pi\rho_{o}} \left( \frac{\rho}{\rho_{o}} \right)^{1/3} (k_{p}l_{p})^{5/2} \exp\left( \frac{3}{4} \int \Gamma_{p}dt \right) [erg/g] 10^{-8}$$

$$\sim e_{mag.g} \xi^{1/3} \exp\left( \frac{3t}{4t_{cddy}(l_{p})} \right), t_{eddy}(l_{p}) = l_{p}/v_{p}$$
10<sup>-12</sup>

$$kinematic dynamo \mathcal{O} 增幅時間 l_{n1}$$

$$e_{mag}(t_{n1}) = B_{p}^{2}/(8\pi\rho_{p}) = 0.5v_{p}^{2}$$

$$t_{n1} = \frac{8t_{cddy}(l_{p})}{3} \ln\left( \xi^{-2/3} \frac{B_{b}}{B_{o}} \right) \sim \frac{8t_{cddy}}{3} \ln\left( \frac{B_{v}}{B_{o}} \right)$$
10<sup>-16</sup>

$$t_{n1}/t_{dyn} \simeq t_{n1}/t_{vir} = 0.1T_{3}^{0.42} M_{mh,6}^{-1/3} z_{25}^{-5/4}$$

$$t_{vir} = r_{vir}/v_{vir}$$
**収縮よりも早く、磁場増幅する**

# amplification of seed magnetic fields

### Non-linear dynamo phase

$$\begin{split} \varepsilon_{\text{mag}}(t) &= \left(\frac{\xi}{\xi_{\text{nl}}}\right)^{a} \varepsilon_{\text{mag,nl}} + \frac{\chi \varepsilon_{1} \xi^{a}}{\xi_{\text{nl}}^{1/2}} \int_{t_{\text{nl}}}^{t} \xi(t')^{1/2-a} dt' \\ & \text{Erational constraints of the set of t$$

最終的に、

磁場は乱流エネルギーとequipartiotionに達する

$$\frac{B_{\rm eq}^2}{8\pi\rho}\sim \frac{v^2(l_J)}{2}$$



# magnetic amplification during the collapse



Due to the dynamo amplification,

initially weak B-field can reach the equipartition level before the protostar formation.

# ambipolar diffusion effects

• Even with a strong magnetic field, AD heating rates are always smaller than cooling rates.

 $\Gamma_{\rm AD} < \Lambda_{\rm net}$ 

 AD heating cannot change the thermal evolution in the collapsing primordial gas cloud.

- Similarly, AD cannot inhibit B-field amplification.
- $\rightarrow$  Ideal MHD is valid in the primordial case.

· As a results,

B-fields around the protostar become stronger compared to the case of present day star formation.

primordial gas: 
$$B \sim 10^{4-5}$$
 G  
present day :  $B \sim 10^{2-3}$  G

### How does such amplified strong B-field affect the first star formation ?



# MHD simulations of turbulent gas cloud

Higashi et al. 2024 シミュレーションと解析解の比較



粘性スケールまでカスケードした乱流があれば、初代星形成領域においても強磁場が存在

# magnetic effects on first star formation

# magnetic effects on star formation



Magnetic fields reduce the disk size and binary separation, suppress fragmentation and decrease the star formation efficiency.

### turbulent magnetic fields in first star formation

### coherent B-field



MHD outflow & magnetic braking can transport the angular momentum

- reducing disk size
- suppressing disk fragmentation
- reducing the binary separation



Hennebelle & Teyssier 2008



Machida+2008

### turbulent B-field

(e.g., first star forming region)



### **Question**?

How turbulent B-fields affect on disk size, fragmentation, binary separation,

### magnetic effects



# previous works of MHD simulations

# Machida & Doi 2013; Sharda + 20, 21; Stacy+2022; Prole+22; Hirano+22; Sadanari+24; Sharda+2024





# MHD simulation of first star formation

### Impact of turbulent magnetic fields on disk formation and fragmentation in first star formation

Kenji Eric SADANARI,<sup>1,\*</sup> Kazuyuki Ом∪каI <sup>©</sup>,<sup>2</sup> Kazuyuki S∪GIMURA,<sup>3</sup> Tomoaki MATS∪MOTO,<sup>4</sup> and Kengo TOMIDA<sup>2</sup>

# overview of our studies

### **3D MHD simulations**



magnetic pressure, magnetic torques, outflow

# set-up of MHD simulation

### [simulation code]

**AMR(Adaptive Mesh Refinement) code** 

- ideal MHD + self gravity
- energy eq. w/ cooling/heating

$$\frac{\partial e}{\partial t} + \nabla \cdot \left[ \left( e + p + \frac{1}{8\pi} |\vec{B}|^2 \right) \vec{v} - \frac{1}{4\pi} \vec{B} \left( v \cdot \vec{B} \right) \right] + \rho \vec{v} \cdot \nabla \phi$$

• 14 chemical reactions among 6 species : H, H<sub>2</sub>, e, H<sup>+</sup>, H<sup>-</sup>, H<sub>2</sub><sup>+</sup>

resolution: cell size < Jeans length/64

### [initial set up]

**Bonnor-Ebert sphere** (= gas cloud core) (central density  $n_{c,init} = 10^3 \text{ cm}^{-3}$ )

• rigid rotation

$$E_{\rm rot} / |E_{\rm grav}| = 0.01$$

• turbulent velocity (  $V_{\rm turb} \propto k^{-1/2}$  )

 $E_{\text{turb}} / |E_{\text{grav}}| = 0.03$ 

uniform magnetic field

 $E_{\text{mag}} / |E_{\text{grav}}| = 0, \ 2 \times 10^{-7}, \ 2 \times 10^{-5}, \ 6 \times 10^{-4}$ 



(Matsumoto 2007, Sugimura+2020)

$$\nabla \phi + \Lambda = 0$$
  
radiation cooling

(H2, HD lines, gas continuum) chemical cooling/heating



# overview of our simulations



# overview of our simulations



# turbulent B-fields @ protostar formation





# **B-field evolution within the disk**



- Disk rotation slowly amplifies B-field in the disk region.
- Diffusion by turbulent reconnection reduces the magnetic amplification rate.

# disk fragmentation



### size of disk region

 $\rightarrow$  almost the same across the all magnetized cases.

### multiplicity

 $\rightarrow$  Regardless of B-field strength within the disk, multiple systems are formed.

# disk fragmentation



- size of spiral arms(SAs) & gas distribution
  - $\rightarrow$  SAs in Binit = 5x10^-7 G case are shorter than other weaker case.
  - ightarrow The gas within the disk concentrate to the center.

# B-field effects : magnetic pressure



magnetic pressure stabilizes the disk  $\rightarrow$  fragmentation  $\downarrow$ 

# B-field effects : magnetic pressure



magnetic pressure stabilizes the disk  $\rightarrow$  fragmentation  $\downarrow$ 

# B-field effects : magnetic torques



Flux<sub>grav</sub>

Flux<sub>mag</sub>

 Effect of magnetic torque is dominant in the outer region of the disk.

# **B-field effects : MHD outflow**



# **B-field effects : MHD outflow**



 ✓ generation of toroidal fields by protostellar rotation

✓ Pram > Pmag→ extinction of the jets

The impact of mass & AM ejection is minor





# 磁気効果:アウトフローによる質量放出



 ✓ generation of toroidal fields by protostellar rotation

✓ Pram > Pmag→ extinction of the jets

The impact of mass & AM ejection is minor



# magnetic effects on disc fragmentation



- Magnetic pressure & AM transport by magnetic torques stabilize circum-stellar/binary disks.
  - → The cumulative number of fragments decreases with stronger B-field in the disc.
- However, most of the protostars merger each other.
  - $\rightarrow$  we can see clear reduction of number of protostar only in the case of Binit = 5x10^-7 G.

# Summary

- We have performed 3D ideal MHD simulations of first star formation from collapse phase to accretion phase.
- $\rightarrow$  investigating whether turbulent B-fields affect the disk fragmentation.

### [our findings]

magnetic amplification by rotational motion is slow due to the magnetic reconnection diffusion.

### magnetic pressure

stabilizes the circum-stellar/binay disk.

### magnetic torques

transport the angular momentum in radial direction, leading to stabilize the disk.

### MHD outflow

Magnetic pressure winds are occasionally driven, but their impact on stellar mass is minor.

### [conclusion]

If B-fields can be amplified to about equipartition fields during collapse phase, the magnetic effects can reduce the number of protostar → top heavy IMF



# future work

