Tibet/ALPACAによるガンマ線天文学 Keitaro Fujita(ICRR, Tibet/ALPACA group) 高エネルギー現象で探る宇宙の多様性IV

CR Spectrum and mass composition

2024/11/11

Approach : PeVatron Search through Sub-PeV γ -ray Observation

! CR orbits are bent by the Galactic Magnetic Field (GMF)! PeV CR observation is not suited for the PeVatron search…

GMF

CR trajectory

Approach : PeVatron Search through Sub-PeV γ -ray Observation

✓ Observation of γ rays produced from CR-gas interactions ✓ Energies of the γ rays : <u>sub-PeV (E > 100 TeV)</u> 2024/11/11

Extensive Air Shower Array

高エネルギー現象で探る宇宙の多様性IV

- North (m)

Tibet Air Shower Array

Yanbgajing, China (90.522°E, 30.102°N) 4,300 m a.s.l.

✓ International collaboration b/w China & Japan (since 1991)

- ✓ <u>Air Shower (AS) Array 65,700 m²</u>
 - = 597 x 0.5m² scintillation counter
- ✓ Angular resolution : ~0.2° @ 100TeV γ
- ✓ Energy resolution : ~20% @ 100TeV γ

Underground Muon Detector Array (MD Array)

2024/11/11

γ -ray selection

• number of muon $(\sum N_{\mu})$ measured by MD array as a function of sum of particle density $(\sum \rho)$ measured by AS array

Effective background CRs rejection : > 99.9% @ E > 100TeV γ -ray survival ratio : ~ 90% @ "

- <mark>ル</mark>、で探る宇宙の多様性IV

First Detection of Sub-PeV γ-ray from Crab Nebula[®]

- \checkmark The highest energy reaches 450 TeV
- ✓ The observed γ -rays can be explained w/ leptonic emission (inverse Compton scattering off CMB by electrons)

2024/11/11

高エネルギー現象で探る宇宙の多様性IV

Detection of Sub-PeV Galactic diffuse γ -rays up to 1PeV ¹⁰

Amenomori+., PRL 126, 141101,(2021)

Energy spectra in two sky regions

✓ Sub-PeV γ -ray emission from the Galactic disk

✓ These γ -rays would be produced from CR-gas collisions

=> Strong support for the existence of PeVatron(s) in the Galaxy

高エネルギー現象で探る宇宙の多様性IV

PeVatron candidate

%Fang+, PRL 129, 071101 (2022)

SNR G106.3+2.7 (E >10 TeV)

multi-wavelength flux interpretation^{*}

Amenomori+, Nat. Astron. Lett (2021)

2024/11/11

Declination (deg)

Sub-PeV gamma-ray astronomy (>100 TeV, 2019~)²

202

高エネルギー現象で探る宇宙の多様性IV

Southern Sky is ...

✓ Very rich in HE sources (~80 TeV sources²) ! Inaccessible by the current sub-PeV γ -ray observatories $\beta_{\pi\pi}$

Southern Sky is ...

Fermi-LAT GeV all sky¹ (Galactic coordinates)

North. Sky (Tibet, HAWC, LHAASO)

Many PeVatron candidates in the southern skyll

2.

3

https://svs.gsfc.nasa.gov/14090

<u>и, A&A 653, A152 (2021)</u>

", A&A 666, A124 (2022)

South. sky

Galactic Center²

(Supermassive BH)

ALPACA experiment

Chacaltaya, Bolivia (16° 23' S, 4740 m a.s.l.)

ALPACA site

4200m

1

エル・アルト

El Alto

Google

4600m

ラパス

La Paz

.a Paz

41

UPAC KATAR

ホセ・アルナ

3

ラパス国際空港

ALPACA detectors

<u>Surface Air Shower Array</u> (Coverage: 83,000 m²)

- 1 m² scintillation detector (× 401)
- Reconstruct the primary energy and arrival direction

<u>Underground Muon Detector Array</u> (Total area: 3,600 m²)

- 56 m² / cells × 64 cells
- Discriminate b/w gamma rays and cosmic rays by counting the number of muons in showers y e
- ✓ Effective BGCR rejection (>99.9% @100TeV)
- ✓ Angular resolution ~0.2° @100TeV
- ✓ Energy resolution ~20% @100TeV

2024/11/11

Reinforced concrete Waterproof material and reflector

20inch PMT

0.9 m

高エネルギー現象で探る宇宙の多様性IV

ALPAQUITA surface array

Surface Air Shower Array Gamma rays & Cosmic rays (Coverage: 18,450 m²) Full ALPACA AS and MD Ver.1.0 M. Ohnishi - 1 m² scintillation detector (× 97) ✓ Air Shower Trigger Condition: Any 4 detectors with > 0.7 particles within 600 ns Air shower (μ , γ , e) \rightarrow Air shower trigger rate: ~280 Hz (Any 3 trigger has been implemented since June 2024) ✓ One MD construction starts in 2024 123.62 X= 26.45 Y= -9.87 Sft=1116.6 Sd= 0. out-42596 mid-60120.0146007190 #ob-300 m E >100 TeV 高エネルギー現象で探る宇宙の多様性IV 2024/11/1

ALPAQUITA in operation

ALPAQUITA Event Rate 2023.04.07 – 2024.04.30

Moon shadow by ALPAQUITA

- Shadow of the moon is clearly detected at $>8\sigma$
- Evolution of the deficit depth suggests the angular resolution of 1.1 degree (mode energy = a few TeV)

ALPACA construction plan

Final design of muon detector

2024/11/11

高エネルギー現象で探る宇宙の多様性IV

S.Kato et al., Experimental Astronomy (2021) 52:85-107

Beyond sub-PeV

2024/11/11

Multi-readout PMT was developed to extend dynamic range

Summary

- Sub-PeV gamma-ray astronomy is started in the northern hemisphere by the Tibet air shower array, HAWC & LHAASO
- Results of the Tibet AS + MD arrays:
 - Sub-PeV γ-rays from the Crab Nebula
 - Galactic diffuse γ -rays
 - Observation of PeVatron candidates
- Next frontier, the southern sky, is explored by ALPACA
 - Galactic center etc.
- Prototype ALPAQUITA is now in operation & obtained data are under analysis