木曽Tomo-e Gozenによる短時間変動現象の探査

さこう しげゆき

酒向 重行(東京大学大学院理学系研究科附属天文学教育研究センター、次世代ニュートリノ科学・ マルチメッセンジャー天文学連携研究機構)

にいのう ゆう

新納 悠(東京大学大学院理学系研究科附属天文学教育研究センター)

Tomo-e Gozenコラボレーション

Institute of Astronomy, the University of Tokyo 東京大学大学院 理学系研究科附属 天文学教育研究センター

東京都三鷹市

東京大学大学院理学系研究科附属天文学教育研究センター 木曽観測所

観測所施設

- 1974年設立
- 暗い空,標高 1132 m
- 研究室,実験室,宿泊施設,食堂
- 常駐スタッフ 6名

105 cmシュミット望遠鏡

- ・ 超広視野 φ9°
- 主鏡 *ϕ*150 cm球面
- 補正レンズ *φ*105 cm
- F比 3.1

大学共同利用は2017年に終了 現在、共同研究ベースで運用中

シュミット望遠鏡ドーム

105 cmシュミット望遠鏡

1. Tomo-e Gozen計画の概要

可視光で明るさが変動する天体

可視光で明るさが変動する天体

世界初の広視野動画カメラによる高頻度の時間軸サーベイ

カメラ概要

- 視野 20平方度
- 84台のCMOSセンサ(190メガ画素)
- 2フレーム/秒の動画
- 可視光単色
- 2019年10月より観測開始

データの出力と処理

- 毎夜30TBの画像ビッグデータ
- カメラと直結したオンサイトの計算処理システム
- CPU 200コア, ストレージ 1PB
- 機械学習・最適化アルゴリズムによる逐次処理とアラート生成
- SINET6に接続

望遠鏡焦点に搭載されたトモエゴゼンカメラ 84台のCMOSセンサが並ぶ

東京大学木曽観測所 105cmシュミット望遠鏡

「巴御前出陣図」 東京国立博物館蔵 Image: TNM Image Archives

7

突発現象の探査能力

Tomo-e Gozenによる秒スケールの全天動画サーベイ

データの取得方法

- 気象条件の自己判断による「自動スケジューリング+自立運転」,「遠隔操作可」
- 20 平方度/ポインティング, 0.5秒 x 18 フレームの動画
- 晴天夜のほぼ毎日(年間~100夜)

サーベイ領域

- 1. 12,000平方度 (**全天**,高度>35°),1回/夜,3時間で完了
- 2. 3,000平方度(深夜南中領域), <10回/夜(高頻度)

達成感度

- <17等級, <18等級 (スタック時),3秒角分解能(シーイング限界)
- 1回の全天スキャンで約1億天体を検出

空の広域を動画にて高感度・高解像度で監視する世界唯一のデータ 特定の天体を狙っているわけではない。対象は夜間の「空」。

1台のCMOSセンサで取得した動画データ, 2 frames/sec

機械学習モデルによる突発現象の検出の高精度化

過去のサーベイ画像と比較することで突発現象を検出。

問題点

Tomo-e Gozenの広域サーベイデータの中には、1夜に~10件の突発現象が含まれるが、~10⁶件の誤検出が発生する。

対策

- ・機械学習モデル(CNN, VAT)でReal/Bogus分類 → 誤検出を~10²件に低減。
- 天体カタログの情報を併用した機械学習モデル(Random forest)で精度を更に向上。
- ・ 観測後の数分以内に情報公開

畳み込みニューラルネットワーク(CNN)に よるReal/Bogus分類モデル

即時の情報共有によるタイムドメイン観測の連携

Tomo-e Gozenによる代表的な科学論文

2.

3.

9.

Ū	mo-e Gozenic よる N 衣 的 な 朴子 論 入	<u>論文のテーマ</u>
1.	Urakawa et al. ` <i>Shape and Rotational Motion Models for Tumbling and Monolithic</i> Asteroid 2012 TC4 : High Time Resolution Light Curve with the Tomo-e Gozen Camera' The Astronomical Journal, Volume 157, Issue 4, article id. 155, 13 pp. (2019).	地球接近小惑星
2.	Arimatsu et al. ` <i>New Constraint on the Atmosphere of (50000) Quaoar from a Stellar Occultation' The Astronomical Journal, Volume 158, Issue 6, article id. 236, 7 pp. (2019).</i>	太陽系外縁小天体
3.	Richmond et al. <i>An optical search for transients lasting a few seconds</i> ' Publications of the Astronomical Society of Japan, Vol 72, 1, id.3 (2020)	未知のフラッシュの探査
4.	Ohsawa et al. ` <i>Relationship between Radar Cross Section and Optical Magnitude based on Radar and Optical Simultaneous Observations of Faint Meteors</i> ' Planetary and Space Science, Vol 194, id. 105011 (2020)	微光流星
5.	Morokuma et al. ` <i>Follow-up observations for <mark>IceCube-170922A</mark>: Detection of rapid near-infrared variability and intensive monitoring of TXS 0506+056' Publications of the Astronomical Society of Japan</i> , Vol 73, 1, pp.25-43 (2021)	ニュートリノ
6.	Sasada et al. ` <i>J-GEM optical and near-infrared follow-up of gravitational wave events during LIGO's and Virgo's third observing run</i> ' Progress of Theoretical and Experimental Physics, Vol 2021, 5, id.05A104, 23 pp. (2021)	重力波
7.	Jiang et al. ` <i>Discovery of the Fastest Early Optical Emission from Overluminous SN Ia 2020hvf:</i> A Thermonuclear Explosion within a Dense Circumstellar Environment. The Astrophysical Journal Letters, Vol 923, 1, L8 (2021)	超新星
8.	Nishino et al. ` <i>Detection of highly correlated optical and X-ray variations in <mark>\$5 Cygni</mark> with Tomo-e Gozen and NICER' Publications of the Astronomical Society of Japan, Volume 74, Issue 3, 6 pp (2022)</i>	わい新星
9.	Niino et al. ` <i>Deep simulta<mark>neous limits on optical emission from FRB 20190520B by 24.4 fps options with Tomo-e Gozen</mark></i> ' The Astrophysical Journal, Volume 931, Issue 2, id.109, 7 pp. (2022)	高速電波バースト
10.	Beniyama et al. ` <i>Video observations of tiny <mark>near-Earth objects</mark> with Tomo-e Gozen</i> ' Publications of the Astronomical Society of Japan, Volume 74, Issue 4, 27 pp. (2022)	地球接近小惑星
11.	Aizawa et al. ` <i>Fast optical flares from M dwarfs detected by a one-second-cadence survey with Tomo-e Gozen</i> ' Publications of the Astronomical Society of Japan, Volume 74, Issue 5, pp.1069-1094 (2022)	M型星フレア

2. Tomo-e Gozenとマルチメッセンジャー観測

15

重力波の可視対応イベントの探査

中性子星連星(BNS)合体 GW170817

- 重力波と電磁波の両方で検出。これまで唯一。
- 40Mpc, 可視光にて17mag (発見時)
- 数10日間かがやき続ける[‡] (kilonovaと呼ばれる)。
- GW170817[†]が中性子星連星合体の典型とは限らない。 サンプルを増やす必要がある。
 - [†]Tomo-e Gozenの完成以前に発生。
 - *合成されたr過程元素を含む放射性重元素の崩壊を 熱源とした可視赤外線で明るい電磁波放射。

- 20平方度の広い視野と迅速な追観測が可能(限界等級 20 mag)。
- 突発天体の検出パイプラインを利用してGW対応天体候補を捜索。
- GWの位置決定精度が低い場合に大きなアドバンテージ。
- BNSの場合、*D*<約100Mpcが必要。

検出限界等級 (V_{mag})

16

Tomo-e Gozenによる重力波の即時追観測のながれ

通常時は広域動画サーベイを無人かつ自立的に進めている。

GWアラートを受信すると速やかにGW追観測モードへ移行する。

Tomo-e Gozenによる観測実施状況

O3-O4a のTomo-e GozenによるGW追観測実績

- 信頼度、位置決定精度が良く、近距離のBNS, NS-BH, BBHを観測。
- GW アラート43件に対して追観測
- 可視光対応天体の検出なし。
- O4a では O3よりデータ処理速度と突発天体の誤検出の割合が改善。

O4b の観測

- 2024年4月から実施中、2025年6月まで継続予定。
- 10月までにGW アラート11件に対して追観測

18

10 +

Gpc

Tomo-e GozenによるO4a(2023.5 – 2024.1)の観測実績

O4aのTomo-e GozenによるGW追観測の実績

- 信頼度、位置決定精度が良く、近距離のBNS, NS-BH, BBHを観測。
- 113回のGWイベントのうち、追観測を16回実施。
- 可視光対応天体の検出なし。
- 03より画像データの処理速度と突発天体の誤検出の割合が改善。

https://en.m.wikipedia.org/wiki/List_of_gravitational_wave_observations

S230520ae

- BBH @~2000 Mpc
- 誤差領域: ~3400 deg² (99%)
- ~1700 deg² (24%), 木曽から観測可
- 検出候補天体数: >1000 (誤検出を含む)

誤検出が多いことが課題

GW到来方向の誤差領域マップ

検出された**GW**対応 天体の候補のカッ トアウト画像の例

シュミットシンポジウム2023新納らより

重力波の発見から起源の解明まで一貫した観測網を構築(計画)

超新星ニュートリノの追観測

- Super-Kamiokande (SK) によるニュートリノバーストのアラート を受けて即時追観測を行い、近傍超新星の最初期の姿を捉える。
- SK collaboration から GCN にアラートが発せられると、重力波と 同様に自動追観測を実施するシステムを構築(2024/6より運用)
- 確度の低い low level alert(非公開)についても追観測できる
 連携の体制を協議中
- 実際に low level の現象が発生したためTomo-e Gozenで追観測
 - 木曽から見える高度が低かったため難航
 - アラート発生の当日と翌週に観測
 - 明るさが変動している天体は見つからず

3. Tomo-e Gozenによる秒スケールの変動現象の探査

22

わい新星のサブ秒スケール変動の可視-X線同時観測

- わい新星SS Cygのサブ秒分解能の可視-X 線高速同時観測を実施
- 可視光とX線の明るさの時間変動がほぼ同期していることを発見。 •
- 白色矮星の近傍に分布する高温ガスから放射されるX線が、周囲の降着円盤 • や伴星を広く照らしているために引き起こされると考えられる。

木曽Tomo-e Gozen (2019-)

◎東京大学木曽観測所

可視400nm~700nm

広視野と高感度

時刻精度<1ミリ秒

©NASA 時刻精度<0.1ミリ秒 Gendreau, Keith C et al. 2016

Nishino et al. 2022, PASJ

SS Cygの想像図 ©東京大学木曽観測所

西野ら、東京大学プレスリリースより

M dwarfの秒スケールのフレアの探査

- 約5700個の赤色矮星に対し視野固定の2 fps連続モニタ観測を実施。
 (10hrs data, total 30 TB, 3-4 flares for 200 deg² hr),
- 数10秒の短時間に増光するフレアを22件検出。
- 短時間に増光する強力なフレアが活動的な赤色矮星において平均で1日
 に1回程度発生することを示した。
- 赤色矮星まわりの系外惑星における生命居住可能性の議論にも影響を及 ぼしうる

Aizawa et al. 2022, PASJ

M dwarfの短時間フレアの想像図 ©東京大学木曽観測所

Fast Radio Burst からの可視光放射探査

- 数ミリ秒間の電波突発現象 @~1 GHz
- Lorimer et al. (2007) で初発見。15年あまりで約800天体発見。
- 起源とメカニズムはいまだに不明
- Dispersion measure が大 → 銀河系外由来を示唆
 - 一部で母銀河同定あり(約50件)
- バーストー回限りのものと繰り返しバーストする種族がある
- 銀河系内のマグネター(SGR 1935+2154)から FRB like バースト
 - X線バーストを伴う
 - 銀河系外のイベントとの関連は不明(放射エネルギーが数十倍異なる)
 - 銀河系外イベントで電波以外の放射は未発見
- FRBからの電波以外の放射をとらえれば起源解明の重要な手がかり
 - 可視光の短時間放射は従来の観測装置では難しかった

Caption: CSIRO's Parkes radio telescope. Credit: David McClenaghan, CSIRO

Tomo-e Gozen と電波 でFRBを同時観測

既知 repeating FRB モニタリング

- FAST 500m(中国)、山口大32m電波望遠鏡 と連携して同時観測
- Repeating FRB の活動期をとらえれば数時間の間に10発以上の電波バーストが見られる場合もあり
- 可視光放射の検出はまだなし
- 電波-可視 SED に制限

Non-repeating FRB の広域モニタリング

- 広視野電波望遠鏡 CHIME(カナダ)の視野を Tomo-e Gozenで同時観測
- Tomo-e視野内でのイベントは未発生
- 期待される発生頻度~1 per 240 hrs
- 観測を継続中

サブ秒フラッシュの探査

未知の短時間発光現象をさがす。Tomo-e Gozenで初めて探査が可能なパラメータ空間。

取得データ

- ・ 地球影の方向(銀河面領域以外)を連続観測,28夜,~50時間
- 1 fps, 限界等級: ~ 17.5 mag
- 面積×時間: ~ 800 deg² hours (~120 TB)

1件のフラッシュイベントを検出

- ・ 連続した2フレームにのみ検出。
- 2イベントのピーク位置と明るさは同程度。
- 周囲の天体のPSFサイズ(~3" FWHM)と同程度。
- 2フレーム目のイベントは楕円形に広がっている。

フラッシュの起源を特定できず

- 微光流星? 太陽系小天体の衝突イベント?自ら発光する人工天体?
- FRB, GRB等の遠方のバースト現象? 重力マイクロレンズイベント? (+ 大気揺らぎでPSFが伸びる?)
- 未知の物理学的イベント? 未知の天文学的イベント?

統計サンプルを増やすためにデータ取得を継続中

本講演のまとめ

木曽観測所105 cmシュミット望遠鏡 + Tomo-e Gozenカメラ

- 宇宙の短時間変動現象をとらえることを目的に開発された可視光超広視野カメラ。
- 空の20 deg²を最大2 fpsで動画観測。
- 自立運転で毎晩>10,000 deg²以上の広域をサーベイ。

Tomo-e Gozenによるマルチメッセンジャー観測

- 重力波、宇宙ニュートリノに対して、広視野と迅速な追観測を活かした即時追観測。
- O3, O4aにBNS, NS-BH, BBHアラートに対し計35回の即時追観測を実施。
- 可視光のGW対応天体は非検出。
- TAO 6.5 m望遠鏡(2024年度完成予定)による近赤外分光とのタイムドメイン連携を計画中。

Tomo-e Gozenによる秒スケールの変動現象の探査

- 秒スケールの恒星フレアを検出
- 降着円盤のX線との同時観測を進行中
- 高速電波バーストの電波望遠鏡との同時観測を進行中
- 起源が明らかでないサブ秒フラッシュを検出

т о м о·е 6 о **г** е п