Non-relativistic Disk-wind-Driven Expanding Radio-emitting Shell in Tidal Disruption Events

Hayasaki & Yamazaki (2023), ApJ, 954, 5

Kimi Hayasaki Chungbuk National University (SK)

「高エネルギー現象で探る宇宙の多様性IV」研究会@ICRR on 12/Nov/2024

Scientific motivation to study tidal disruption events (TDEs)

- Probe of quiescent supermassive black holes (SMBHs) and intermediate-mass black holes
- 2. Natural laboratory for testing general relativistic (GR) effects
- Luminous thermal transients over a wide range of wavebands from optical to UV to soft X-ray + IR from dust echoes
- 4. Sources for non-thermal, high-energy (e.g., synchrotron) emissions
- Targets for multi-messenger astronomy: gravitational wave and neutrino sources (IceCube neutrino associated with AT2019dsg)

https://eventhorizontelescope.org/ EHT collaboration (2019) and (2022)

Overview of TDE theory

 Debris spread energy $M_7 = M/10^7 M_{\odot}$ $\Delta \epsilon / c^2 \approx (GM/r_{\rm t}) (r_{*}/r_{\rm t}) / c^2 \sim 4.6 \times 10^{-4} \ M_7^{1/3} \, m_{*1}^{2/3} \, r_{*1}^{-1}$ $m_{*,1} = m_* / M_{\odot}$ $r_{*,1} = r_* / R_{\odot}$ Fallback time of most tightly bound debris $t_{\rm mtb} = (\pi/\sqrt{2})(1/\Omega_*) (M_{\rm bb}/m_*)^{1/2} \sim 0.35 \text{ yr } M_7^{1/2} m_*^{-1} r_*^{2/3}$ Peak mass fallback rate (super-Eddington rate) $\dot{M}_{\rm fb.pk} = (1/3)(m_*/t_{\rm mtb}) \sim 6 \times 10^{25} \,{\rm g \, s^{-1}} \, M_7^{-1/2} \, m_{*.1}^2 \, r_{*.1}^{-3/2} \gg L_{\rm Edd}/c^2$ $(L_{\rm Edd} = 1.3 \times 10^{45} M_7 \, {\rm erg/s}$ is the Eddington luminosity) Time dependence of mass fallback rate $M_{\rm fb} = (d\mathcal{M}/d\epsilon)(d\epsilon/dt) \propto t^{-n}$ 5/3 w/o stellar internal structure Rees (1988); Phinny(1989); Evans & Kochaneck (1989)

5/3 w/o stellar internal structure Rees (1988); Phinny(1989); Evans & Kochaneck (1989)
< 5/3 w/ stellar internal structure Lodato et al. (2009); Golightly et al. (2019)
> 5/3 partial TDEs Guillochon & Ramirez-Ruiz (2013); Coughlin & Nixon (2019)
> 5/3 eccetric TDEs Hayasaki et al. (2013, 2018); Park & Hayasaki (2021); Cufari et al. (2022)
< 5/3 hyperbolic TDEs Hayasaki et al. (2018); Park & Hayasaki (2021); Cufari et al. (2022)

Debris circularization and mass accretion rate

1. Circularization radius (r_{circ})

$$r_{\rm circ} = l^2/GM = \begin{cases} (1+e^*)r_{\rm t}/\beta & \text{for eccentric TDEs (Hayasaki et al. 2013)} \\ 2r_{\rm t} \sim 10 r_{\rm S} (\beta/1.0)^{-1} M_7^{-2/3} m_{*,1}^{-1/3} r_{*,1} & \text{for standard, parabolic TDEs} \end{cases}$$

2. Circularization time (t_{circ})

3. Mass accretion rate $(\dot{M}_{\rm acc})$

Ballistic approximation for parabolic TDEs (Bonnerot et al. 2017)

$$t_{\rm circ} = 8.3 \,\beta^{-3} (M/10^6 M_{\odot})^{-5/3} t_{\rm mtb}$$

~ $6.3 \times 10^{-2} \,{\rm yr} \, \left(\beta/1.0\right)^{-3} M_7^{-7/6} \, m_{*,1}^{-1} \, r_{*,1}^{3/2}$

$$\begin{cases} t_{\rm acc} \le t_{\rm circ} \to \dot{M}_{\rm acc} = \dot{M}_{\rm fb} \\ t_{\rm acc} > t_{\rm circ} \to \dot{M}_{\rm acc} \neq \dot{M}_{\rm fb} \end{cases}$$

(Cannizzo et al. 1990, 2009; Balbus 2017; Mummery & Balbus 2020; Tamilan, Hayasaki & Suzuki 2024)

Accretion disk formation for the radiatively efficient case

Hayasaki, Stone & Loeb (2013)

Newtonian potential simulation

Simulation with GR corrections

General relativistic precession plays a crucial role in the accretion disk formation around supermassive black hole

Optically thick case

• Potentially liberated energy due to streamstream collision:

Edge-on view

Lu and Bonnerot (2020); Bonnerot and Lu (2020)

The two-stage simulation demonstrated that the outflow drives the disk formation.

Eddington envelope formation

Loeb & Ulmer (1997)

Self-consistent parabolic TDE simulations by Price et al. (2024)

- 1. Outflow velocities of $\sim 10^4 \, \mathrm{km/s}$;
- 2. Peak optical luminosities of $\lesssim L_{\rm Edd}$ at the large photosphere radii of $\sim 10 100 \, {\rm AU}$;

3. A relatively low mass accretion rate ($\sim 10^2\,M_\odot/{\rm yr}$) due to the mass loss

4. Soft-X-ray emission from the formed disk could appear at late time due to collapse of the photosphere near BH.

Eddington envelope formation at a large scale and low density region $t \leq 365 \,\mathrm{days}$ x-y plane 60 days 90 days Disk formation at the smaller scale and (much) higher density region $t \ge 366 \,\mathrm{days}$ $120 \, days$ t=366 days t=407 days t=487 days t=649 days 180 days 150 days 5 AU Kerr: beta = 1

5

3 4 log column density [g/cm²]

2

Importance of accretion disks in observed TDEs

1. Primary X-ray emission source, providing crucial insights into the energetics, dynamics, and emission mechanisms in X-ray-emitting TDEs.

2. Disk models can explain properties of TDE X-ray light curves

Radio observations of TDEs

Outflow velocity is non-relativistic ($\beta \sim 0.1$) in AT2019dsg

Flaring from **OUV** to **soft X-ray + radio** bands with strong **IR** echo + **neutrino**

Multi-wavelength observations of AT2019dsg

Strong dust echo

(Stein+2021; Cannizzaro+2021

van Velzen+2024)

0.0

Evolution of radio emitted region in AT2019dsg

Different from a free-expansion solution: $R \propto t$ and the Sedov solution: $R \propto t^{2/5}$ What physics determines the dynamics of R(t) in radio TDEs?

Evolution of radio-emitting region in AT2019dsg

Matsumoto et al. (2021)

Our model Hayasaki & Yamazaki (2023)

- 1. A time-dependent, non-relativistic, onedimensional spherically symmetric shell model as a radio emitter Chevalier A. R (1982); Longair S. M (2011)
- 2. Electrons in the shell are accelerated to relativistic energies with $\propto \gamma^{-p}$, producing synchrotron emissions e.g., Chevalier A. R (1998)
- 3. Not simple point source explosion but continuous mass injection at a rate proportional to $\dot{M}_{\rm fb}$ from the disk. This is unique to TDEs
- 4. Strong gravity unlike SNRs or PWNs In this work, we focus on dynamics of R(t)

Schematic diagram of sphericallysymmetric radio-emitting shell

Model details

Assumptions

1. Spherically symmetric shell

2. Thin shell approximation: $\Delta R \ll R$

3. The thin shell is formed at $r = r_0$ and

 $t = t_0$

- 4. Initial velocity: $\dot{R}(t = t_0) = v_0$, where $v_0 \sim 0.1c$
- 5. For simplicity, thermal pressure and the gravitational force are neglected

In this work, we focus on the dynamics of R(t)

Schematic view of our model

Equation of motion of the shell

• Momentum conservation law between t and $t + \Delta t$

$$F_{\rm ej}\Delta t = M(t + \Delta t)\dot{R}(t + \Delta t) - M(t)\dot{R}(t)$$
Impulse
$$at \Delta t \to 0 \text{ limit}$$
Equation of motion of the thin shell
$$M\frac{d^2R}{dt^2} = \left[1 - \epsilon\left(\frac{\dot{R}}{V_0}\right)\right]F_{\rm ej} - F_{\rm am}$$

• Shell mass:

 $M = M_{\rm ej} + M_{\rm am} + \Delta m$

- Ram pressure force due to disk wind: $F_{\rm ej} = 4\pi R^2 (\rho_{\rm ej} \dot{R}^2)$
- Ram pressure force due to ambient matter: $F_{\rm am} = 4\pi R^2 (\rho_{\rm am} \dot{R}^2)$

Dimensionless equation of motion

$$\ddot{y} = \left[(n-1) \left[x + \epsilon (1-y) \right]^{-n} \left[2\dot{y} - \epsilon \dot{y}^2 - \frac{1}{\epsilon} \right] + \eta \epsilon (n-1) y^{2-s} \dot{y}^2 \right]$$

$$/ \left[\left[x + \epsilon (1-y) \right]^{1-n} - \frac{\eta \epsilon (n-1)}{3-s} (y^{3-s} - 1) - \delta \epsilon (n-1) - 1 \right]$$

Five different dimensionless parameters:
$$(n, s, \epsilon, \eta, \delta)$$

$$n = -\frac{\ln(\dot{M}_{\rm ej}/\dot{M}_{\rm 0})}{\ln(t/t_{\rm 0})} \quad s = -\frac{\ln(\rho_{\rm am}/\rho_{\rm am,0})}{\ln(r/r_{\rm 0})} \quad \epsilon = \frac{V_{\rm 0}}{v_{\rm 0}} \quad \eta = \frac{\rho_{\rm am,0}}{\rho_{\rm ej,0}} \quad \delta = \frac{\Delta m}{(4\pi\rho_{\rm ej,0}r_{\rm 0}^3)}$$

 $x \equiv rac{t}{t_0},$

 $y \equiv$

R(t)

 $\dot{y} \equiv \frac{dy}{dx} = \frac{\dot{R}(t)}{V_0},$

 $\ddot{y} \equiv \frac{d^2 y}{dx^2} = \ddot{R}(t) \frac{t_0}{V}$

We solve the dimensionless equation of motion numerically using the RK method

Analytical solutions

1. Approximate solution around $t = t_0$ (near the time origin)

$$y(x) = y(x_0) + \dot{y}(x_0)(x - x_0) + \frac{1}{2}\ddot{y}(x_0)(x - x_0)^2 + \frac{1}{6}\ddot{y}(x_0)(x - x_0)^3 + \mathcal{O}\left((x - x_0)^4\right)$$
$$\approx 1 + \frac{1}{\epsilon}(x - x_0) - \frac{1}{2}\frac{\eta}{\epsilon^2\delta}(x - x_0)^2 + \frac{1}{6}\frac{\eta}{\epsilon^3\delta}\left(3\frac{\eta}{\delta} + s - 2\right)(x - x_0)^3$$

2. Asymptotic solution at $R \gg r_0$

$$M\frac{d^2R}{dt^2} = \left[1 - \epsilon \left(\frac{\dot{R}}{V_0}\right)\right] F_{\rm ej} - F_{\rm am} \longrightarrow M_{\rm am} \frac{d^2R}{dt^2} = -F_{\rm am} \qquad s = -\frac{\ln(\rho_{\rm am}/\rho_{\rm am,0})}{\ln(r/r_0)}$$
$$\longrightarrow R(t)\ddot{R}(t) = (s - 3)\dot{R}(t)^2 \longrightarrow R(t) \propto t^{1/(4-s)}$$

Momentum-driven snow plow phase

Comparison between numerical and approximate solutions near the origin

The numerical solutions agree with the approximate solutions for various parameters

Comparison between numerical and asymptotic solutions

- 1. A slightly limp curve of the numerical solution is due to $F_{\rm ei}$
- 2. Numerical solution asymptotes the power law of time with 1/(4-s)

Application to a radio-emitting TDE: AT2019dsg

$$\begin{split} r_{0} &= r_{t} = \left(\frac{M}{m_{\star}}\right)^{1/3} r_{\star} \sim 1.1 \times 10^{13} \,\mathrm{cm} \, \left(\frac{M}{10^{6.7} M_{\odot}}\right)^{1/3} \left(\frac{m_{\star}}{M_{\odot}}\right)^{-1/3} \left(\frac{r_{\star}}{R_{\odot}}\right), \\ t_{0} &= \sqrt{\frac{r_{\star}^{3}}{Gm_{\star}}} \sim 1.6 \times 10^{3} \,\mathrm{s} \, \left(\frac{m_{\star}}{M_{\odot}}\right)^{-1/2} \left(\frac{r_{\star}}{R_{\odot}}\right)^{3/2}, \\ \frac{V_{0}}{c} &= \sqrt{\frac{GM}{c^{2} r_{t}}} = \left(\frac{M}{m_{\star}}\right)^{1/3} \left(\frac{Gm_{\star}}{r_{\star}}\right)^{1/2} \sim 0.25 \left(\frac{M}{10^{6.7} M_{\odot}}\right)^{1/3} \left(\frac{m_{\star}}{M_{\odot}}\right)^{1/6} \left(\frac{r_{\star}}{R_{\odot}}\right)^{-1/2}, \\ M_{0} &= \dot{M}_{0} t_{0} = \frac{f}{3} m_{\star} \left(\frac{t_{0}}{t_{\mathrm{mtb}}}\right) \simeq 6.7 \times 10^{-6} M_{\odot} \left(\frac{f}{0.1}\right) \left(\frac{M}{10^{6.7} M_{\odot}}\right)^{-1/2} \left(\frac{m_{\star}}{M_{\odot}}\right)^{3/2}, \\ t_{\mathrm{mtb}} &= \frac{\pi}{\sqrt{2}} \left(\frac{M}{m_{\star}}\right)^{1/2} t_{0} \sim 92 \, \mathrm{day} \, \left(\frac{M}{10^{6.7} M_{\odot}}\right)^{1/2} \left(\frac{m_{\star}}{M_{\odot}}\right)^{-1} \left(\frac{r_{\star}}{R_{\odot}}\right)^{3/2} \\ \rho_{\mathrm{ei},0} &= \frac{\dot{M}_{0}}{4\pi r_{0}^{2} v_{0}} \sim 1.3 \times 10^{-12} \, \mathrm{g/cm^{3}} \left(\frac{f}{0.1}\right) \left(\frac{\epsilon}{1.0}\right) \left(\frac{M}{10^{6.7} M_{\odot}}\right)^{-3/2} \left(\frac{m_{\star}}{M_{\odot}}\right)^{5/2} \left(\frac{r_{\star}}{R_{\odot}}\right)^{-3} \\ \rho_{\mathrm{am},0} &= \rho_{\mathrm{obs}} \left(\frac{r}{r_{0}}\right)^{s} \sim 1.7 \times 10^{-14} \, \mathrm{g/cm^{3}} \left(\frac{n_{\mathrm{ext}}}{10^{3.56} \, \mathrm{cm^{-3}}}\right) \left(\frac{r}{10^{16.15} \, \mathrm{cm}}\right)^{2.1} \left(\frac{r_{0}}{r_{\mathrm{t}}}\right)^{0.9} \left(\frac{M}{10^{6.7} M_{\odot}}\right)^{1/2} \left(\frac{m_{\star}}{M_{\odot}}\right)^{1/2} \left(\frac{m_{\star}}{M_{\odot}}\right)^{1/2} \left(\frac{m_{\star}}{M_{\odot}}\right)^{1/2} \\ \Delta m &= \delta \epsilon \dot{M}_{0} t_{0} \simeq 6.7 \times 10^{-6} M_{\odot} \left(\frac{f}{0.1}\right) \left(\frac{\delta}{1.0}\right) \left(\frac{\epsilon}{1.0}\right) \left(\frac{M}{10^{6.7} M_{\odot}}\right)^{-1/2} \left(\frac{m_{\star}}{M_{\odot}}\right)^{3/2} \end{split}$$

Six normalization parameters and five dimensionless parameters should be decided for the comparison purpose

-3/2

Comparison with the observation

 $T_{\rm d} \sim 40 \, {\rm days}$: onset of OUV emissions

Our model can explain the evolution of the observed radio-emitted region

Summary

We have constructed a time-dependent, one-dimensional spherically symmetric, geometrically thin shell model to explain the evolution of radio-emitting region in TDEs. Our conclusions are summarized below:

1. The numerical solutions agree with two types of analytical solutions that we derived 2. Our model explains well the observed radio emission size evolution in AT2019dsg

Discussion

- 1. Five main parameters for our models: $(n, s, \epsilon, \eta, \delta)$ are limited to some extent by observation and theory. Determining the optimal set is a future task.
- 2. Thermal pressure and SMBH gravity should be included (Hayasaki & Yamazaki. in prep)
- 3. Synchrotron spectra will be calculated with R(t), allowing a direct comparison between shell dynamics and observations.
- 4. Application to the other radio detected TDEs (ASASSN-14li, etc)
- 5. Initial shell formation and multi-dimensional effects on it (Hu, Price,...& Hayasaki et al. 2024, in prep)

Thank you for your attention