(大質量)星団形成 に関するレビュー

参考文献

Lada & Lada 2003, ARA&A, 41, 57 Portegies Zwart, et al. 2010, ARA&A, 48, 431 Longmore, et al. 2014, Protostars and Planets VI, 1, 291

東北大学

高エネルギー現象で探る宇宙の多様性IV 2024.11.13 @ICRR

Outline

\checkmark Introduction

星団とは

星団の重要性, 星形成, 銀河進化, 大質量星, 宇宙線加速, IMBH etc…

√ 星団形成

銀河内での星形成

大質量な星団を形成するには?

宇宙初期環境の星団形成

√ ガス衝突による星団形成シナリオの紹介

√ まとめ

√ 星団とは?

≫星が高密度に集まった天体

 $\rho_{\rm star} \gtrsim 0.1 \ {\rm M}_{\odot} \ {\rm pc}^{-3} \ \left(= \rho_{\rm star, field} \right)$

Holmberg & Flynn 2000

≫3つのtypeに分類

→ 散開星団, 球状星団,
 Young Massive Cluster

✓ 星のほとんど星は星団中で生まれる e.g., Lada & Lada 2003

≫太陽近傍の大質量星のうち単独星として形成したもの~4% de Wit+05

≫銀河の星形成率密度 ~ 若い星団の星形成率密度

 $3 \times 10^{-3} \text{ M}_{\odot} \text{ yr}^{-1} \text{ kpc}^{-2} \sim 3 - 7 \times 10^{-3} \text{ M}_{\odot} \text{ yr}^{-1} \text{ kpc}^{-2}$ Miller+79 Lada+03

銀河の星形成を知るためには星団形成を知らなくてはいけない

√ 銀河は星を作って進化していく

≫ 銀河系の星形成率の進化

≫銀河系質量は約9割が星,残りの約1割が星間ガス
 ≫銀河は星(星団)を作り続けて現在の姿に

≫星の核融合によって銀河内の重元素量が進化

星団形成と銀河進化は密接につながっている!

なぜ星団形成を知りたいのか? √ 星団の質量分布関数 √ 星の質量分布関数 10^{3} Salpeter55 Antennae (4 cluster rich spirals (MillerScalo79 10² Kroupa01 M51 const Chabrier03individua cluster poor spirals Mass Function $\xi(m)\Delta m$ Chabrier03system M31 10¹ МЗ1 署 LMC log dN/dlogM 10^{0} 10^{-1} 10^{-2} οĒ t < 1Gyr 10^{-3} 10^{0} 10² 10-2 10^{-1} 10^1 5.05.54.56.5 3.54.06.0 Mass [Solar mass] log M [M_☉]

≫ 星団は星の生まれる場なので形成過程を知るとその銀河の 星形成がわかる $\frac{dN}{dM} \propto M^{-2} \times \exp(M/M_*)$

≫どのような質量の星がどれだけできるかを知りたい →銀河の金属量の歴史、超新星爆発の頻度等にも重要

銀河の合体史との関わり

Saitoh+09

≫ 銀河は合体しながら進化していく

≫ 衝突銀河,スターバースト銀河では大質量星団が多く観測 Ashman+92

≫どのような環境で大質量な星団が形成するかわかれば 過去の銀河形成史もわかるかも

大質量星団の形成は銀河スケールの現象と密接に関わっている

<u>大質量星団形成境域で観測されるガンマ線</u>

√ 若い大質量星団はEnergetic

≫ 超新星爆発を起こしていない若い星団からガンマ線を観測

≫星風バブルによるフェルミ加速で生成した宇宙線が周囲の分子雲と反応しガンマ線を放出

≫~1-10%の銀河宇宙線が星風で加速している

宇宙線加速の場としても重要かも

<u> 超高密度な環境におけるブラックホール形成</u>

≫ 分子雲から星を形成するシミュレーション
≫ 重たい星団の中心部は高密度になり星が合体し超大質量星を形成
≫ 超大質量星の星の進化を解くと質量 > 10³ M_☉のIMBHに進化

IMBH形成に星団が重要?

銀河系を構成する3種類の星団

▶現在の星形成領域で観測される若い(t_{age} ≤ 0.3 Gyr)星団

√ 球状星団

» 銀河系ハローに存在する古い(*t*_{age} ≥ 10 Gyr)星団

✓ Young Massive Clusters (YMC)

≫ 球状星団程度の星密度を持つ若い(*t*_{age} ≤ 0.1 Gyr)大質量星団

銀河系を構成する様々な星団の形成過程を知りたい

現在の銀河系円盤の星形成領域で形成してる星団

 $M \gtrsim 10^5 \text{ M}_{\odot}$ $R \sim \text{pc}$ $(\rho > 10^3 \text{ M}_{\odot} \text{ pc}^{-3})$

 $t_{\rm age} \gtrsim 10 \ {\rm Gyr}$

≫ 球状星団より2桁大きな星の密度

≫ 重力束縛され長期間構造を維持?

なぜ過去にこれほど大質量な星団が形成したのか?

Bastian & Lardo 2018

≫ 多くの球状星団では一様な金属量を持つ (e.g., Fe, C+N+O)
 ≫ 一方で星の金属組成は一定ではなく、複数のpopulationが存在
 ≫ AGB星の星風で汚染されたガスで再び星を形成?
 →星風成分で形成した質量が70%程度必要だが本当に作れるかは謎

球状星団の金属量分布を完全に再現する理論はない

≫ 鉄やC+N+O に分布が存在するGCも発見

≫銀河系最大のω-Cenでは複数の金属量成分の星が確認されている

≫鉄が測られているGCの~25%ぐらいが複数金属量を持つ

→銀河系バルジと似ているので矮小銀河のコアの生き残りと考えられている

銀河合体の名残か?

Young Massive Cluster

- ✓ Young Massive Clusters (YMC)
 - ≫ 球状星団程度の星密度を持つ若い大質量星団 $M \gtrsim 10^4 \text{ M}_{\odot}$ R ~ pc ($\rho > 10^3 \text{ M}_{\odot} \text{ pc}^{-3}$) $t_{\text{age}} \lesssim 0.1 \text{ Gyr}$
 - ≫複数の大質量星を含む
 - → 恒星風, UV, 超新星爆発
 - ≫相互作用銀河で多く観測

球状星団の若い姿の可能性がある星団

√ 銀河は星を作って進化していく

≫ 銀河系の星形成率の進化

≫銀河系質量は約9割が星,残りの約1割が星間ガス
 ≫銀河は星(星団)を作り続けて現在の姿に

≫星の核融合によって銀河内の重元素量が進化

星団形成と銀河進化は密接につながっている!

Outline

\checkmark Introduction

星団とは

星団の重要性, 星形成, 銀河進化, 大質量星, 宇宙線加速, IMBH etc…

√ 星団形成

銀河内での星形成

大質量な星団を形成するには?

宇宙初期環境の星団形成

√ ガス衝突による星団形成シナリオの紹介

√ まとめ

≫薄いHIガスから高密度な分子雲を形成
 ≫星間ガスの高密度領域が重力崩壊して星に
 ≫大質量星が形成すると周囲のガスをフィードバックで蒸発
 ≫形成した星団はN体相互作用で進化する

進化の流れを見ていく

<u>星形成の元となるガス分子雲の形成</u>

- ≫銀河内の星間ガスはよく超新星爆発の衝撃波を経験する t_{SN}~1 Myr
- ≫ 複数の超新星爆発の衝撃波によって圧縮されたHIガスは 低温高密度の分子雲に進化する

 $M \sim 10^6 \text{ M}_{\odot}$ $R \sim 10 - 100 \text{ pc}$ $(\rho \sim 10^{0-3} \text{ M}_{\odot} \text{ pc}^{-3})$

Herschel Aquila filaments André et al. (2010)

From Abe Slide

- ≫近年のハーシェル望遠鏡による ダスト熱放射の観測
- ≫ 分子雲の高密度領域は フィラメント状
- ≫ 臨界線密度を超えた領域が 重力でつぶれる
- ≫フィラメントと原始星が 空間相関

<u>フィードバックによる雲の蒸発</u>

大質量星が形成すると周囲のガスを電離し星形成をとめる

星団形成の複数成分

Sánchez-Sanjuán+24

巨大分子雲では電離が完了し終わるまで星を作り続ける t_age ~ 30Myrそのため星団は複数の成分のクランプから成る

-> 密度の低い星団は重力束縛できずフィールド星に

 $\rho \sim 10^{-1 \sim 2} \text{ M}_{\odot} \text{ pc}^{-3}$ (球状星団の密度よりは小さい)

≫形成する星密度(星形成効率1-10%:星団形成領域)

 $M \sim 10^6 \text{ M}_{\odot}$ $R \sim 10 - 100 \text{ pc}$ $(\rho \sim 10^{0-3} \text{ M}_{\odot} \text{ pc}^{-3})$

≫ 分子雲の密度

<u>大質量星団を形成するには</u>

e.g., Fukushima & Yajima (2021)

- ≫ 球状分子雲の崩壊
- ≫高い面密度を持つ雲の場合は バウンドクラスターに
- ≫ HIIフィードバックが効かないくらい 高い面密度が重要

 $v_{\rm esc} > c_{\rm s,HII} \sim 10 \text{ km/s}$

≫高いSFEで星を形成し高密度星団へ

面密度が高いとフィードバックが効かず に大質量星団に→どのように?

<u>球状星団も同様に形成するのか?</u>

初期宇宙の大質量星団形成領域の観測されつつある

From Ishida Slide

太陽近傍と同様に星団が形成するかは議論の余地あり

<u>球状星団の組成異常を再現するシミュレーション</u>

✓ 星風・SN入りの星団形成シミュレーション

->ただし十分な質量な第二世代星が できているわけではない

Outline

\checkmark Introduction

星団とは

星団の重要性, 星形成, 銀河進化, 大質量星, 宇宙線加速, IMBH etc…

√ 星団形成

銀河内での星形成

大質量な星団を形成するには?

宇宙初期環境の星団形成

√ ガス衝突による星団形成シナリオの紹介

√ まとめ

<u>高密度な星団形成を起こすためのいくつかのシナリオ</u>

Longmore+14

√ 星を作りながら段々と高密度に

≫銀河中心のような高密度な分子ガスが崩壊して星団を作る? →銀河外縁の大質量星団はどのように形成するかは謎

≫分子雲が崩壊しながら大質量星団を作る

→フィードバックが効く前にコンパクトになれるか?

どちらの説も観測的には確かめられていない

√ 大質量星団の形成

<u>観測が示唆するYMC形成メカニズム @LMC</u>

✓ LMCで観測されるHIガスの特徴 Fukui et al. (2017), Tsuge et al. (2019, 2020)

▶ 速度の異なる(~100 km/s)二成分のHIガスが衝突

> ガス衝突領域では活発な星形成が観測されている (R136, N44, etc…)

銀河間相互作用に由来する超大規模な($\sim kpc$) ガスの高速衝突($\sim 100 km/s \gg c_{s,HI} \sim 10 km/s$)でYMCが形成?

<u>LMCにおけるガス衝突の起源</u>

✓ SMCとLMCの近接遭遇によるガスの流入

≫マゼラン雲のHIガスの柱密度

10 20 30 40 Column density $[10^{20} {\rm cm}^{-2}]$

- ➤ SMCとLMCの近接遭遇によるガスの 剥ぎ取り(~0.2 Gyr 前) Fujimoto & Noguchi (1990), Bekki & Chiba (2007)
- ➤ SMCのガスがLMCに落下しガスが高 速衝突
- ➤ ガスの衝突領域の金属量はLMCの金属量に比べて小さい (LMC ~ 1/3 Z_☉,SMC ~ 1/10 Z_☉) Fukui et al. (2017)

LMCで観測されたガスの高速衝突は 銀河間相互作用に由来

<u>大質量星団形成に関する観測的示唆</u>

√ 近傍の星団形成領域

銀河間相互作用による高速なガス衝突で 大質量星団が形成する e.g., Fukui+17, Tsuge+19, 21

衝突するガスのラム圧と形成する 星団の質量に相関がある

→ガス衝突メカニズムを理解 することが重要

 MW
 LMC
 Antennae

 Westerlund 2
 R136
 Cluster B1

 Total stellar
 10⁴ M
 10⁵ M

From Tsuge Slide

シミュレージの面衝突にやットアップ

√ 観測で示唆されているHIガス衝突

衝突領域の一部を切り取って シミュレーション

Formation of Massive Gas Clumps by Fast HI Gas Collision

✓ Fast HI gas collision simulation Maeda et. al. (2021, 2024b)

Massive ($> 10^4 M_{\odot}$) & compact (< 10 pc) clumps seem to be formed by the global gravitational collapse of molecular clouds created in the shocked layer

Formation of Massive Gas Clumps by Fast HI Gas Collision

Evolution

\checkmark 3 stages of massive clump formation

Formation of small clouds

Small cloud formation by thermal instability

Massive clump formation

Small clouds merge by gravity to form massive clouds.

≫ Feedback

Massive stars are formed in clouds, causing feedback.

Formation of Small Clouds in Shocked Region

Formation of Massive Gas Clumps by Fast HI Gas Collision

Evolution

\checkmark 3 stages of massive clump formation

Formation of small clouds

Small cloud formation by thermal instability

Massive clump formation

Small clouds merge by gravity to form massive clouds.

≫ Feedback

Massive stars are formed in clouds, causing feedback.

Massive Clump Formation by Gravitational Collapse of Shocked Sheet

- ✓ Strong initial B-field simulation $B_0 = 3 \ \mu G$
 - >> Dense regions are not created due to strong B-field $n > 10^4 \text{ cm}^{-3}$
 - >>> Low density clumps which are supported by B-field $n \sim 10^2 \text{ cm}^{-3}$
- ✓ Gravitational collapse condition of shock compressed layer (Mouschovias & Spitzer Jr, 1976;Nakano & Nakamura, 1978)

$$\frac{M}{\Phi_{\rm m}} \cdot 2\pi\sqrt{G} = \frac{1.2}{\left(\frac{\sin\theta}{\sin 45^{\circ}}\right)^{-1}} \left(\frac{L}{100 {\rm pc}}\right) \left(\frac{B_0}{1\mu {\rm G}}\right)^{-1} \left(\frac{n_0}{1 {\rm cm}^{-3}}\right) > 1$$
Gravitational collapse against B-field (Fiducial model)
$$= \frac{0.4}{\left(\frac{\sin\theta}{\sin 45^{\circ}}\right)^{-1}} \left(\frac{L}{100 {\rm pc}}\right) \left(\frac{B_0}{3\mu {\rm G}}\right)^{-1} \left(\frac{n_0}{1 {\rm cm}^{-3}}\right) < 1$$
Gravitational collapse suppress due to B-field

Formation of Massive Gas Clumps by Fast HI Gas Collision

Evolution

\checkmark 3 stages of massive clump formation

Formation of small clouds

Small cloud formation by thermal instability

Massive clump formation

Small clouds merge by gravity to form massive clouds.

≫ Feedback

Massive stars are formed in clouds, causing feedback.

Evolution of the Mass of Formed Gas Clumps

\checkmark Evolution of clumps formed by gas collision simulation

 \rightarrow One connected region(> 10⁴ cm⁻³) is identified as the clumps at each time.

- ≫ $M \sim 10^5$ M_☉ clumps remain even with feedback (after forming many massive stars).
- ≫ By contrast, $M \sim 10^3 10^4$ M_☉ clumps are decreased (evaporated by feedback?)

Effect of Feedback in Clump Formation

\checkmark Comparison of escape velocity and sound speed of HII region

- > $v_{esc} > c_{HII}$ e.g., Bressert et al. (2012) Gravity prevents gas escape
- $\succ v_{\rm esc} < c_{\rm HII}$
 - Hll region expands against gravity
- ✓ The difference in the evolution of gas clumps with different escape velocities

The clumps with large escape velocity maintain a dense structure for a long time and form a star \rightarrow YMC

宇宙初期環境での大質量星団形成の理解したい

<u>初期宇宙環境のガス衝突計算</u>

√ 初期宇宙での銀河衝突率の観測

≫JWSTによる観測

≫銀河衝突率が増加

≫ ガス衝突領域で同様に 星団形成がおきうるか?

√ 宇宙初期環境のガス衝突計算

- ≫ 金属量の小さいガス計算では熱不安定性の最大 成長波長が大きくなり大きなクラウドが形成
- ≫ Z < 0.04 Z_oで熱不安定で形成した雲のスケール がジーンズ長を超える→大質量星団形成?

≫自己重力と磁場がある場合はどうなるのか?

シミュレーションセットアップ

√ 基礎方程式

MHD	c.f. Inou	ie & Inut	suka 12	
+加熱	冷却	Inoue &	Inutsuka 12	2
+化学	反応	Inoue &	Omukai 15	
+自己	重力	Maeda+	-24a	
+フィ	ードバ	ック	Maeda+24k	D
冷却は 高温側	Maed の冷却	a+24]関数	·bに加 <i>え</i> を導入	とて Kim+23
Free	-Free	Dra	ine+11	

再結合線 (H) Draine+11 Gnat & Ferland 12

√ 境界条件

CIE

УZ	面	ガス流入
xy, zx	面	周期境界

√ 初期条件

$v_{\rm rel} = 100 \text{ km/s}$
$n_0 \sim 1 \ {\rm cm}^{-3}$
$B_0 = 1 \ \mu G$
$Z = 10^{-2}, \ 10^{-4}$

<u>低金属ガス衝突シミュレーション (10⁻⁴ Z_o)</u>

≫計算初期はほとんど高密度領域は形成しない ≫時間が経過すると100/cc以上の領域が形成

<u>Solar Metal との比較</u>

✔ 低金属環境 (宇宙初期)

≫太陽金属環境では小さいCNMが合体し大質量なクラウドを形成≫低金属環境では小さいクラウドを形成してない

クラウド形成の違いの要因は?

<u>低金属環境における高密度ガス雲形成</u>

≫ 低金属環境では熱平衡曲線の山の位置が変化

- ≫ 衝撃波加熱されたガスは熱平衡曲線の山を超えられない
- ≫ H2が形成すると冷却が効いて高密度なガスが形成

金属冷却ではなくH2の冷却が高密度ガス雲形成に重要

<u>H2冷却が効く場合のガス雲形成</u>

≫H2冷却が効く場合は熱不安定性が抑制される

≫熱不安定性が抑制されると小さいクラウドに分裂せず 大質量な星団に進化する可能性がある

低金属環境ではより大質量な星団が形成可能か? →今後 質量依存性を調べていく

<u>議論:熱平衡曲線の性質</u>

熱平衡曲線は周囲のGOや宇宙線の電離率によっても異なる

大質量星団を作るような面密度の高いガス塊 の形成にはガス衝突が重要!

球状星団になるかも