宇宙線研究所小研究会 高エネルギー現象で探る宇宙の多様性

キロノバのスペクトルで探る r-process元素合成の痕跡

<u>土本菜々恵 (東北大学)</u>

田中雅臣 (東北大学), 川口恭平 (宇宙線研), 加藤太治 (核融合研), 和南城伸也 (MPI)

2021/10/18 (Mon.)

,	元素の起源																
H	】 ビッグバン											13	14	15	16	17	He
Li	Be											B ⁵	C	N ⁷	0 ⁸	۴	¹⁰ Ne
Na	Mg 星の中、超新星爆発										AI	Si ¹⁴	P ¹⁵	S ¹⁶	Cl	Ar	
	Ca	Sc ²¹	Ti ²²	V ²³	Cr ²⁴	Mn ²⁵	Fe	Co	Ni ²⁸	Cu ²⁹	Zn ³⁰	Ga	Ge	As	Se ³⁴	Br	Kr ³⁶
Rb ³⁷	Sr ³⁸	Y	Zr	Nb	42 Mo	Tc	Ru	Rh ⁴⁵	Pd	Ag	Cd ⁴⁸	۹۹ In	Sn ^{₅0}	Sb	Te	53	Xe
C s	Ba	57-71	Hf	Ta ⁷³	W	Re	Os	Ir ⁷⁷	Pt	⁷⁹ Au	Hg	TI B1	Pb	Bi	Po	At	Rn ⁸⁶
Fr	Ra	89-103	Rf	105 Db	Sg	Bh	Hs	109 Mt	Ds	Rg	Cn	¹¹³ Nh	FI	115 Mc	116 Lv	T s	Og

La ⁵⁷	Ce	Pr	Nd 60	Pm	Sm ⁶²	Eu	Gd 64	Tb	Dy	Ho	Er ⁶⁸	Tm	Yb	Lu
Ac	••• Th	Pa	U ⁹²	⁹³ Np	Pu 94	Am	⁹⁶	Bk	Cf	Es	Fm	Md	102 No	103 Lr

連星中性子星合体: r-process site

Sekiguchi et al. 2015

 $= \frac{n_p}{n_n + n_p}$ $Y_{\rm e}$

Shibata et al. 2017

Tanaka et al. 2017

GW170817/ Kilonova

Which and how much elements?

観測スペクトル

Motivation

元素組成

→ 元素の起源、中性子星合体の物理

スペクトルにおける元素の同定に向けて: どの元素が強い吸収を作れるのか?

輻射輸送計算

Tanaka & Hotokezaka 2013, Tanaka et al. 2014, 2017, Kawaguchi et al. 2018

- 質量: Mej = 0.03 Msun
- 速度: v = 0.05-0.3 c
- 密度構造: 1D simple power law ($\rho \propto r^{-3}$)
- 元素組成: a multi-components free expansion model Wanajo 2018
- Line strength of bound-bound transitions

$$\tau_l = \frac{\pi e^2}{m_e c} f_l n_{i,j} t \lambda_l$$

Line list : VALD (the Vienna Atomic Line Database)
*based on atomic experiments

輻射輸送計算

- 元素組成: a multi-component free expansion model Wanajo 2018

Results: synthetic spectrum

Sr II/Ca II triplet

They have a similar atomic structure and transitions. Ca II triplet [Ar]3d ${}^{2}D_{\frac{5}{2},\frac{3}{2}} \longrightarrow [Ar]4p {}^{2}P_{\frac{3}{2},\frac{1}{2}}^{0}$ Sr II triplet [Kr]4d ${}^{2}D_{\frac{5}{2},\frac{3}{2}} \longrightarrow [Kr]5p {}^{2}P_{\frac{3}{2},\frac{1}{2}}^{0}$

https://www.nist.gov/pml/ periodic-table-elements

For GW170817

Physical conditions

color: v=0.2c & different entropies

X(Ca)/X(Sr) < 0.002

→Velocity and entropy of high-Ye component is relatively high for GW170817.

近赤外線における吸収線

In the λ < 10000 A:

- Sr IIとCa IIが強い吸収線を作りうる (high-Ye tracer) ²
- → GW1701817へ制限

```
<u>赤外線の吸収線を同定できるか?</u>
```

*Problem:

lack of accurate atomic data

- Spectral features must be affected by accurate atomic data

Summary

- The origin of elements, physics of NS mergers
 - Identification in spectra is direct way to find synthesized elements.
 - Which elements can produce absorption features?
 - Not only Sr II but also Ca II lines also appear in the spectra if including less heavy elements (high-Ye tracer).
 - We can directly obtain the evidence of synthesized heavy elements like lanthanides.
 - NIR lines are important for understanding of NSM.
- Observational properties of high energy explosion is determined by (micro) atomic physics.