1/15

高エネルギー現象で探る宇宙の多様性

光度曲線の系統的調査に基づく 重力崩壊型超新星の爆発機構への制限

- 齋藤 晟 (東北大学)
- 田中 雅臣(東北大学)
- 澤田 涼 (東京大学)
- 守屋 尭 (国立天文台)

爆発のメカニズム(運動エネルギー)

- 観測の典型値: E_k ~ 10⁵¹ erg (~ Mv²)
- 第一原理計算: E_k ~ 10⁵⁰ erg(計算に時間がかかる)
 (≥ 1.0 秒)

第一原理計算:運動エネルギー

⁵⁶Ni の合成量 M_{Ni}、爆発のタイムスケール t_{grow}

2/15

超新星の放射エネルギー源 ⁵⁶Ni

超新星爆発時に放射性元素 ⁵⁶Ni を合成 観測:ピークの明るさ(測りやすい)

 ・理論:中心付近のみで合成(短時間で計算可)

超新星の光度曲線

~ - 20 mag の天体 —> どこまでが 56Ni で光る通常の超新星か?

Arcavi et al. 2016, De Cia et al. 2018, Prentice et al. 2021, Matsuda in prep

⁵⁶Ni の合成量 M_{Ni}、爆発のタイムスケール t_{grow}

4/15

研究の目的

- 爆発のメカニズムは?
- どこまでが ⁵⁶Ni で光る「通常」の超新星か?

超新星の光度曲線から ⁵⁶Ni の合成量を系統的に調査 流体・元素合成計算(親星の構造・爆発のタイムスケール) --> ⁵⁶Ni で光る超新星の明るさの上限値 爆発のタイムスケールへの制限

Open Supernova Catalog e.g., Guillochon et al. 2017

- : 85 個の stripped-envelope 超新星の bolometric 光度曲線
 - ピーク等級 (M_{peak}) —> ⁵⁶Ni の質量 (M_{Ni})
 - 減光のタイムスケール (Δt1mag) —> エジェクタの質量 (Mej)

$$t_{\rm ch} = \sqrt{\frac{3\kappa M_{\rm ej}}{4\pi c v_{\rm ej}}} \propto M_{\rm ej}^{1/2} v_{\rm ej}^{-1/2}$$
Arnett 1982

 $(v_{ej} \sim 10,000 \pm 2,000 \text{ km/s})$

e.g., Lyman et al. 2016

超新星の種類

H rich (II 型) 放射エネルギー源 ・⁵⁶Ni

・内部エネルギー

減光のタイムスケール vs ピーク絶対等級

エジェクタの質量 vs ⁵⁶Ni の質量

9/15

● 超高輝度超新星は M_{Ni} ≥ M_{ej}
 ● 一部の超新星は高い M_{Ni} ~ 0.2 M_{ej}

Mej, MNi -> 爆発のタイムスケール

流体力学・元素合成計算

1D 流体計算 (blcode) Morozova et al. 2015

21核種の元素合成計算

Timmes et al.

エジェクタの質量 vs ⁵⁶Ni の合成量

11/15

エジェクタの質量 vs ⁵⁶Ni の合成量

観測と理論の比較: Mej vs MNi

爆発のタイムスケールと 56Ni の合成量

観測と理論の比較: Mej vs MNi

14/15

<u>d < 100 Mpc</u>

<u>過半数の超新星の 56Ni の質量を説明するには tgrow < 0.3 秒</u>

まとめ

