ブラックホール降着流の研究

~これまでの成果と今後の課題~

大須賀健 (筑波大)

高橋博之(駒澤大),川島朋尚(東大),野村真理子(呉高専), 北木孝明,恒任優,水本岬希,嶺重慎(京大), 朝比奈雄太,小川巧未,荻原大樹,井上壮大,内海碧人,高橋幹弥,尾 形絵梨花,武者野拓也(筑波大),都丸亮太(Durham Univ.)

ここまでのまとめ

- 降着円盤は宇宙の至るところに存在
- 田論的には3種のブラックホール降着 円盤があり、分岐の原因は降着率
- 異なる円盤からは異なるアウトフロー が発生するはず
- 解析モデルを基本としつつ、シミュレーション研究の時代に突入

ー般相対論的(GR-)MHDへの発展

SUPER-EDDINGTONはなぜ可能?

Mass density

Strong radiation pressure supports the thick disk and generates the jets, ~0.3-0.7c.

Photons mainly escape through the region around the rotation axis, so that the radiation pressure cannot prevent the accreting motion.

輻射流体から輻射磁気流体へ

see also Sadowski et al. 2014, Jiang et al. 2014

Time variation

<u>Sheet like structure</u>

Outflow velocity ~ 0.1-0.2cSize (azimuthal direction) ~ 100RsRotation velocity ~ 30% of V_{kep}

Time variation

Timescale of the luminosity variation $(100 \text{Rs}/0.3 V_{\text{kep}})$ is

$$1 \sim 2.5 \left(\frac{M_{\rm BH}}{10 M_{\odot}}\right) \left(\frac{\ell_{\rm cl}^{\theta}}{10^2 r_{\rm S}}\right) \left(\frac{r}{10^3 r_{\rm S}}\right) {\rm s}^{-1}$$

Our result is consistent with the observations of ULXs (Middleton+11) and V404 Cyg (Motta+17) in the case of M_{BH}~10-100Msun.

Ultra Fast Outflows (UFOs)

One of the important candidates of the origin of the AGN FEEDBACK

- Blueshifted Fe absorption lines are detected in **40% of Sy galaxies**.
- Typical velocity is **0.1-0.3c**.
- •Outflow rate ~ Accretion rate
- Kinetic power ~ Jet power

Tomaru et al. 2020

まとめ

- 精密な円盤+ジェット+円盤風の構造解明のための高精度大規模シミュレーション
- 理論と観測の協働によるアプローチ
- 宇宙の進化過程の解明に向けたBHスケールと銀 河・宇宙論スケールとの連結