高エネルギー現象で探る宇宙の多様性I 2021 October 18(Mon)-19(Tue) Institute for Cosmic Ray Research, the University of Tokyo (Kashiwa/On-line)

磁気再結合における粒子加速の 理解を目指して: 太陽フレア観測衛星 PhoENiX計画

<u>Physics of Energetic and Non-thermal plasmas in</u> the <u>X</u> (= magnetic reconnection) region

Noriyuki Narukage (NAOJ)

Mitsuo Oka, Yasushi Fukazawa, Keiichi Matsuzaki, Shin Watanabe, Taro Sakao, Kouichi Hagino, Ikuyuki Mitsuishi, Tsunefumi Mizuno, Iku Shinohara, Masumi Shimojo, Shinsuke Takasao, Tomoko Kawate, Takafumi Kaneko, Seiji Zenitani, Hiroshi Tanabe, Munetaka Ueno, Tadayuki Takahashi, Takeshi Takashima, Masayuki Ohta and PhoENiX WG member

Science Goal

Understanding of particle acceleration during magnetic reconnection

Science Objectives

- To identify *particle acceleration sites* <u>in reconnection-associated structures</u> in solar flares
- 2. To investigate *the timing of particle acceleration* <u>during reconnection-associated</u> <u>phenomena</u> in solar flares
- To characterize the properties of accelerated particle populations in solar flares

Accelerated particles are deviated from equilibrium.

Thermal equilibrium = Maxwell distribution

Number of electrons

1 keV 10 keV 100 keV 1 MeV Energy of electrons

The energy of accelerated particles achieves up to 10²⁰ eV. Accelerated particles are ubiquitously detected in the universe.

4

Makishima (1999)

How are particles accelerated? It is not fully understood.

Super Nova Remnant (long time acceleration)

Gamma-ray Burst (short time acceleration)

Balbo+ 2011

1st order Fermi-acceleration Statistical acceleration

How are particles accelerated in very short time?

Magnetic reconnection is a key.

Balbo+ 2011

September 2010

How are particles accelerated in very short time?

Credits: eCUIP and ISDC

October 2010

Magnetic Reconnection

MR is fundamental plasma process and ubiquitously occurs in the universe.

 $R_{e} = 10^{4}$

 $R_{e} = 1.54$

Significance of solar flare study

[Plasma physics]

Natural laboratory of plasma

- Magnetic reconnection
- Particle acceleration

[Unique observation target]

The closest star

 Solar phenomenon can be observed with wide field of view and with spatial and temporal resolutions

[Impacts on the Earth and social environments]

The mother of the Earth

- Evolution of life (cosmic rays)
- Space weather

[As a star]

Reference of other astrophysical objects

Magnetic Reconnection Picture in Solar Flare

has been established by both observation and theory.

Observation

SDO Spots X8.2-Class Solar Flare, Sep 10, 2017 Model

Magnetic Reconnection Picture in Solar Flare

has been established by both observation and theory.

Observation

Magnetic reconnection & Particle acceleration in solar flare

1. A solar flare is an efficient accelerator.

Particle Acceleration is one of the long-standing major puzzles in solar physics

Non-thermal component around X-point

Science Objectives of PhoENiX mission

- 1. Identify particle acceleration sites in solar flares [where]
- 2. Investigate temporal evolution of particle acceleration [when]
- 3. Characterize properties of accelerated particles [how]

Why X-rays and Gamma-rays?

- comparison with <u>spectroscopy</u> in other wavelengths

Required measurements to trace the accelerated particles in MHD-scale solar flare system

(Update from past or existing observations)

Above-the-looptop & footpoint sources

h Masuda et al. 1992

Sui and Holman 2003 Res: -7 arcsec 10-12 keV 12-14 keV 14-16 k

Double coronal source

Observational Approach for Scientific Objectives

PH

Specification of the PhoENiX instruments

ENTON

-					
観測能力	要求值	根拠			
太陽フレアを観測するために必要な性能(全てのエネルギー帯域の観測に共通の要求)					
視野	> 360×360 arcsec ²	フレア領域全体が視野に収まること			
観測時間	> 10 minutes	少なくとも、フレア発生前からフレアピークまでを観測できること			
時間分解能	< 10 sec per spectrum < 1 sec per lightcurve	スペクトルに対してはAlfvén時間で規定 ライトカーブに対しては加速電子の伝搬時間で規定			
太陽フレアシステ	ムが生み出すプラズマ構造(加速源)	と加速中の電子集団を調査するために必要な性能:軟X線集光撮像分光			
エネルギー範囲	0.5 keV – 10 keV	プラズマ構造の温度(熱的スペクトル)と、加速中の電子の情報(熱的分布から乖離していくスペクトル)が取得できること			
エネルギー分解能	< 0.2 keV (FWHM)	物理情報を引き出すために、輝線群と連続光成分が分離可能なこと			
空間分解能	< 2 arcsec (FWHM)	磁気再結合が生み出す構造にはスケールフリーなものが含まれるため、次の様 に設定する。大規模フレア(~10 ⁵ km~140")では各ZONE内を分解し各プラ ズマ構造が識別できること。小規模なフレア(~10 ⁴ km~14")では少なくとも フレア領域をZONE1~4に分離できること。			
ダイナミックレンジ	> 10 ⁴	フレアループが増光しても、全てのZONEをくまなく観測できること			
スペクトル毎の光子数	> 1600 photons	温度・密度の測定誤差を10%以下に収めること			
;	加速された電子集団の検出と、その低	云搬を追跡するために必要な性能:硬X線集光撮像分光			
エネルギー範囲	5 keV – 30 keV	加速電子の情報(熱的分布から乖離した冪型スペクトル)の取得のため			
エネルギー分解能	< 1 keV (FWHM)	加速状態が異なる成分(冪型スペクトルの折れ曲り)も検出できること			
光源位置の決定精度	< 2 arcsec	空間分解したプラズマ構造(加速源候補)に対して、加速電子が存在する領域			
空間分解能	< 4 arcsec (FWHM)	の位置を決定することが重要であり、その精度は、ブラズマ構造の調査に必要 な空間分解能と同じである必要がある。なお、この位置決定精度を達成するため、その2倍程度の空間分解能も必要である。			
ダイナミックレンジ	> 10 ³	ループの足元が増光しても、全てのZONEをくまなく観測できること			
スペクトル毎の光子数	> 3200 photons	加速電子の総数の測定誤差をファクター2以下 (50%~200%) に収めること			
加速された電子の運動の非一様性と最高到達エネルギーを調査するために必要な性能:軟ガンマ線偏光分光					
エネルギー範囲	20 keV – 300 keV, 数MeV	より高いエネルギーにまで加速された電子の情報を取得するため			
エネルギー分解能	< 10 % (FWHM)	加速状態が異なる成分(冪型スペクトルの折れ曲り)も検出できること			
測定可能な偏光度の 下限値	< 10 % in >M5 class flares	加速電子の運動の非一様性を評価するため [6]。ただし測定手法に起因し、偏光 測定のエネルギー範囲は60 keV – 300 keVになる。			
スペクトル毎の光子数	> 500 photons	ト記の偏光測定精度を達成するため			

Instruments and Key technologies of PhoENiX

The basic developments of these technologies have been completed.

~3.0m

Hard X-ray Imaging Spectrometer (5 keV ~ 30 keV)

<u>High-precision X-ray mirror</u> Resolution: < 2 arcsec Low scatter: 10⁻⁴ @ 20 arcsec

High-speed soft X-ray camera Back-illuminated CMOS sensor

<u>Large effective area X-ray mirror</u> Resolution: < 4 arcsec (FWHM)

High-sensitivity hard X-ray camera Fine-pitch CdTe detector

Soft Gamma-ray SpectroPolarimeter (20 keV ~ > 300 keV (> 1 MeV))

<u>Si/CdTe Compton camera with active shield</u> Polarization measurement: > 60 keV

~2.0m

FOXSI-2 result was published from Nature Astronomy (Ishikawa et al. 2017)

а

FOXSI-3 Soft X-ray data 250 FPS data (4 ms continuous exposure)

Data analysis software

Data analysis software (GUI tool) for FOXSI-3

- 1. Selection of area, timing and energy range
- 2. Adjustment of binning for space, time and energy
- 3. Spectral fitting with Xspec

This version is developed with IDL, which is widely used in solar physics community.

FOXSI

FOXSI-4 sounding rocket project : It's time to observe a flare!!

First sounding rocket to observe a solar flare

Science objectives:

- 1. Determine how much particle acceleration occurs in the gradual phase of a flare
- 2. Produce images and spectra of flare footpoints from thermal to non-thermal energies
- 3. Determine where non-thermal sources and heated plasma are located in a given coronal configuration
- 4. Measure the spatial distribution of superhot sources in a flare
- 5. Identify locations of energetic electrons in an erupting CME
- Method: Focusing imaging spectroscopy in X-rays (update of FOXSI-3 observation)

OVERALL GRADE (mark panel overall score with "X")									
	Excellent	E/V G	Very Good	VG/ G	Good	G/F	Fair	F/P	Poor
'X': Overall grade.	х								

	July, 2020	2021	2022	2023	2024
Schedule	Proposal was accepted by NASA	Design & Development	Fabrication & Test	Integration & Test	Launch!!

FOXSI-4 sounding rocket project

Goal (cf. FOXSI-3)

<4" FWHM (< 5" FWHM)

• <10" HPD (← 25" HPD)

High-precision electroformed X-ray mirror

Updated CMOS (for soft X-rays) & CdTe (for hard X-rays) detectors

CMOS detector (cf. FOXSI-3) 25 um depletion layer thickness (4 um) for

- Higher sensitivity to high-energy X-rays
- Higher robustness against X-rays

CdTe detector (cf. FOXSI-3)

- Position resolution (~30 µm ← 60 um)
- High Count Rate (~5 k events / s / detector
 - ← 500 events / s / detector)

Sub-strip resolution (Furukawa et al., 2020)

Development of key technologies – Soft X-ray mirror, Soft Gamma-ray spectropolarimeter

High precision soft X-ray glass-polished mirror

< 2" FWHM (Hinode/XRT)

M < 4" FWHM (previous page)

Design for PhoENiX: 1CC

BGO design as

- <u>Active shield</u> for **polarimetry**
- <u>Detector</u> to evaluate maximum energy (for above MeV detection)

Science Objectives of PhoENiX mission

- 1. Identify particle acceleration sites in solar flares [where]
- 2. Investigate temporal evolution of particle acceleration [when]
- 3. Characterize properties of accelerated particles [how]

Strategy of numerical approach

• MHD calculation (~ 10⁷ - 10¹⁰ cm) + test particle

- Determine global energy release process
- Provide the magnetic field and velocity field structures (boundary conditions of particle calculations)
 - e.g., Shocks, Magnetic mirror

Particle calculation (~ $10^{0} - 10^{2}$ cm)

- e.g., Scattering processes via the wave-particle interaction, etc.
- →For example, pick up local regions and study acceleration
 & trapping processes using kinetic models (e.g., PIC)
- Comparison between numerical simulation and observation
 - via emission model
 - Energy spectrum ⇔ Photon spectrum
 - Electron anisotropy \Leftrightarrow Polarization, etc.

Numerical Approach to combine micro and macro scales for comparison with observations

Photosobere

Numerical Approach to combine micro and macro scales for comparison with observations

See also Shibata & Tanuma 2001, Drake et al. 2006, Oka et al. 2010, Shibayama et al. 2015, S. Wang, Yokoyama, Isobe 2015, Kowal et al. 2017, Hoshino 2017

Most previous studies focus on electron acceleration processes in specific regions in a solar flare system.

However, it is highly possible that electrons experience multiple accelerations, trapping, etc. at different locations.

So we need a model to combine them within a single framework for comprehensive understanding.

Foot-point regions

Acceleration by Alfven waves: Fletcher & Hudson 2007, Reep et al. 2018

Numerical Approach to combine micro and macro scales for comparison with observations

Multi-zone model:

Pick up the important regions ("zones") for shaping electron energy spectra (acceleration, trapping, etc.).

Solve the approximated Fokker-Planck eq (e.g. Petrosian 2012) for multi-zones,

$$\frac{\partial N}{\partial t} = \frac{\partial}{\partial E} \left(D_{EE} \frac{\partial N}{\partial E} \right) - \frac{\partial}{\partial E} \left[(A - \dot{E}_L) N \right] - \frac{N}{T_{\text{esc}}} + \dot{Q}$$

N(E) : electron energy distribution function

Escape to the next zone

Injection from the previous zone

Using the multi-zone model, we can

- Consider the propagation of electrons across multiple structures
- Examine/test different acceleration mechanisms
 by trying corresponding coefficients (A, DEE, etc) for each zone
 - → Identify electron acceleration/propagation processes through comparisons with observations

A key task of numerical & analytical studies: Identify important zones and derive effective coefficients

Numerical Approach in macro scale MHD for understanding of ambient plasma

MHD simulation of a solar flare (magnetic reconnection)

1501

100

50

0

-40

1.0

-20

outflow

y (Mm)

temperature

calculated by Kaneko

50

0

-40

5.0 5.5 6.0

-20

0

x (Mm)

log₁₀ (T [K])

20

6.5 7.0 7.5

40

Numerical Approach <u>in macro scale:</u>

detailed MHD modeling of the above-the-loop-top region

2D model of Takasao & Shibata 2016

Density

Magnetic

tuning fork

Magnetic tuning fork oscillation locally produces turbulence even when the reconnection outflow is laminar (possibly as a result of ballooning instability) \rightarrow We will examine the impact on the stochastic acceleration and trapping via turbulence

deta

PHOENIX

Numerical Approach <u>in macro scale</u>

MHD + GCA for understanding of particle acceleration

calculated by Kaneko

Numerical Approach <u>in micro scale</u> PIC for understanding of micro-scale physics

Numerical Approach [Emission model] for comparison

between observation and numerical simulation

Solar corona model in ComptonSoft

Iteration between observation and numerical simulation

Science Objectives of PhoENiX mission

- 1. Identify particle acceleration sites in solar flares [where]
- 2. Investigate temporal evolution of particle acceleration [when]
- 3. Characterize properties of accelerated particles [how]

Interdisciplinary approach

with strength and heritage of each research field

Space Physics

- Observation in interplanetary space (trace of plasmas from the sun)
- PIC simulation

- Laboratory plasma physics
 - Laboratory experiment of MR

Astrophysics

- X-ray & gamma-ray observations
- X-Ray Spectral Fitting Package (Xspec)
- X-ray emission model
- Key technologies

Common Physics

- Particle Acceleration
- Magnetic Reconnection

Solar Physics

- Solar observations
- MHD simulation
- Key technologies

SolFER (Solar Flare Energy Release) – NASA funded Drive Science Center

SolFER News Conference SolFER Collaboration Awarded Time on Frontera Supercomputer SolFER Collaboration Awarded Time on Frontera Supercomputer to Model Solar Flares Conference SolFER Collaboration Awarded SolFER Collaboration Awarded Time on Frontera Supercomputer to Model Solar Flares A New View into the Central Engine of a Large Solar Eruption Upcoming Events The Group 4 call

- 1. Fast Release Mechanisms
- 2. Onset of Energy Release
- 3. Energization of Electrons
- 4. Energization of lons
- 5. Particle Transport
- 6. Plasma Heating

PhoENiX can contribute to and collaborate with these topics.

DI/O LINE SE		Major responsibilities			
PI/GO-I Name Affiliation		in Pre-phase A1a	in Pre-phase A1b and A2		
Noriyuki Narukage	NAOJ	Project lead	Principal Investigator (PI)		
Mitsuo Oka	UCB	Mission science study	Project Scientist (PS)		
Yasushi Fukazawa	Hiroshima U.	SGSP science study	Project Scientist (PS)		
Shin Watanabe	ISAS/JAXA	System study	Mission system lead		
Keiichi Matsuzaki	ISAS/JAXA	System study, SXIS design study	Mission system lead		
Taro Sakao	ISAS/JAXA	SXIS science & design study, System study	SXIS lead, mirror study		
Lindsay Glesener	U. Minnesota	HXIS US contribution study	HXIS U-lead, mirror study		
Kouichi Hagino	Tokyo Univ. of Science	HXIS science study	HXIS J-lead, camera study		
Tsunefumi Mizuno	Hiroshima U.	SGSP science study	SGSP lead, detector study		
Masanori Ohno	Eötvös U.	SGSP science study	SGSP lead		
Kazuto Yamauchi	Osaka U.	SXIS mirror study	SXIS mirror study		
Satoshi Matsuyama	Nagoya U.	SXIS mirror study	SXIS mirror study		
Masayuki Ohta	ISAS/JAXA	SXIS/SGSP detector study	SXIS/SGSP detector study		
lkuyuki Mitsuishi	Nagoya U.	Pre-filter and HXIS mirror study	Pre-filter and HXIS mirror study		
Säm Krucker	UCB/FHNW	SXIS/HXIS US+Swiss contribution study, HXIS design study	SXIS/HXIS US+Swiss contribution study, SXIS/HXIS design & science study		
Tom Woods	LASP, Colorado U.	SXIS/HXIS US contribution study	SXIS/HXIS US contribution study, SXIS/HXIS design & science study		
Amir Caspi	SwRI	SXIS science study	SXIS design & science study		
Steven Christe	NASA/GSFC	HXIS design study	HXIS design & science study		
Amy Winebarger	NASA/MSFC	SXIS/HXIS US contribution study	SXIS/HXIS US contribution study & science stud		
Patrick Champey	NASA/MSFC	HXIS mirror study	HXIS mirror study		
Wayne Baumgartner	NASA/MSFC	HXIS mirror study	HXIS mirror study		
Bin Chen	NJIT	SXIS/HXIS science study, Radio observation study	SXIS/HXIS science study, Radio observation study		
Alexander Warmuth	AIP	SXIS/HXIS science study, DLR contribution study	SXIS/HXIS science study, DLR contribution study		
Tomoko Kawate	NIFS	Science study	SXIS/HXIS/SGSP science study		
Masumi Shimojo	NAOJ	SXIS science study	SXIS science study		
Takafumi Kaneko	Nagoya U.	SXIS/HXIS science study with simulations	SXIS/HXIS science study with simulations		
Natasha Jeffrey	Northumbria U.	SGSP science study	SGSP science study		
Satoshi Masuda	Nagoya U.	Science study	Science study		
Shinsuke Takasao	Osaka U.	Science study	Science study		
lain Hannah	U. Glasgow	Science study	Science study		
Seiji Zenitani	Kobe U.	Science study	Science study		
Takuma Nakamura	IWF/ ÖAW	Science study	Science study		
Hiroshi Tanabe	Tokyo U.	Laboratory-based science study	Laboratory-based science study		
Munetaka Ueno	JAXA	N/A	System advisory		
Takeshi Takashima	ISAS/JAXA	System study	Science advisory		
Iku Shinohara	ISAS/JAXA	Science advisory	Science advisory		
Toshio Terasawa	NAOJ	Science advisory	Science advisory		
Hiroyasu Tajima	Nagoya U.	Science advisory	Science advisory		
Tadayuki Takahashi	Kavli IMPU	Science advisory	Science advisory		
Kuniaki Masai	TMU	Science advisory	Science advisory		
Masaaki Yamada	Princeton U.	Laboratory-based science advisory	Laboratory-based science advisory		

Team members

A NOTING

太陽物理	高エネルギー 宇宙物理	地球・惑星磁 気圏プラズマ 物理	実験室または 核融合プラズ マ物理	工学など、 左記以外

Collaborator name	Affiliation	Area of collaboration
Yoshinori Suematsu	NAOJ	SXIS mirror study
Satoshi Miyazaki	NAOJ	SXIS detector study
Shin'ichiro Takeda	Kavli IMPU	HXIS design & science study
Hiromitsu Takahashi	Hiroshima U.	SGSP design & science study
Takao Kitaguchi	RIKEN	SGSP design & science study
Takashi Minoshima	JAMSTEC	SXIS/HXIS science study with simulations
Shinsuke Imada	Nagoya U.	SXIS science study
Yoshiyuki Inoue	RIKEN	SGSP/HXIS science study
Kyoko Watanabe	NDA	Science study
Takuma Matsumoto	Nagoya U.	Science study
Haruhisa lijima	Nagoya U.	Science study
Satoshi Kasahara	Tokyo U.	Science study
Tomoki Kimura	Tohoku U.	Science study
Aya Bamba	Tokyo U.	Science study
Teruaki Enoto	RIKEN	Science study
Herman Lee	Kyoto U.	Science study
Yoko Tsuboi	Chuo U.	Science study
Ryo Yamazaki	Aoyama Gakuin U.	Science study
Yutaka Ohira	Tokyo U.	Science study
Toshihiro Obata	Tokyo U.	System advisory
Kazunari Shibata	Kyoto U.	Science advisory
Yoshifumi Saito	ISAS/JAXA	Science advisory
Kazuhiro Nakazawa	Nagoya U.	Science advisory
Yoshizumi Miyoshi	Nagoya U.	Science advisory
Masahiro Hoshino	Tokyo U.	Science advisory
Kazutaka Yamaoka	Nagoya U.	Science advisory
Yasushi Ono	Tokyo U.	Laboratory-based science advisory

Extra Science

Beyond the PhoENiX Scientific Objectives

Observation of CME and astronomical objects

PhoENiX can observe the CME and astronomical objects near the ecliptic plane (within 5 degree).

Balbo+ 2011

CME

Carb Nebula

Scorpius X-1

Interdisciplinary approach

for the understanding of plasma physics beyond individual research field

Magnetic Reconnection

<u>Flare</u>

Makishima (1999)

Ji & Daughton (2011)

Shibata & Yokoyama (1999)

One-Page Ideas

PhoENiX team is looking for your scientific ideas that is wanted to be realized with X-ray imaging spectroscopic and soft gamma-ray spectropolarimetric observations for solar flares, i.e., by PhoENiX mission.

https://phoenix-project.science/one-page-idea

Schedule of PhoENiX

Solar-C (EUVST) から PhoENiX へ

The universe is filled with High Energy (Accelerated) Particles!!

> *"What is the origin of High Energy Particles?"*

- Energization of space plasmas
- ✓ Formation and evolution of life
- ✓ Influence on planetary environments

Science Objectives of PhoENiX mission

- 1. Identify particle acceleration sites in solar flares [where]
- 2. Investigate temporal evolution of particle acceleration [when]
- 3. Characterize properties of accelerated particles [how]

planned to be realized in Solar Cycle 26 (2030')

The sun is unique in that:

- ✓ A natural laboratory of high energy plasmas
- ✓ Mother of life
- Impact on earth and social environments

https://indico.ipmu.jp/event/395/

Particle Acceleration in Solar Flares and the Plasma Universe --Deciphering its features under magnetic reconnection

15-19 November 2021 Virtual

Overview Dates and time: Timetable Monday, 15 November - Fri, 19 November, 2021 Contribution List 22:00-3:00 JST* each day (* 21:00-2:00 CST / 14:00-19:00 CET / 8:00-13:00 EST / 5:00-10:00 PST) **Registration and Abstract** Submission Venue: Participant List The workshop will be held as a virtual, online-only event. A link for connection will be sent out later to Kavli IPMU Code of Conduct registered participants. **Registration and Abstract Submission:** Contact seminar@ipmu.jp Abstract submission deadline is October 19, 2021, 23:59 JST. Registration is available through 56

November 10, 2021.