Anatomy of Cosmic Gas – gal. cluster, SN / AGN / CR feedback

Ken NAGAMINE (Osaka / K-IPMU / UNLV)

「高エネルギー現象で探る宇宙の多様性」」

宇宙の大規模構造形成・銀河形成の観点から

Keywords:

「多波長・マルチメッセンジャー天文学」

「幅広いスケールの分野」

「多角的な視点」

- Cosmological Structure Formatio
- Distribution of Cosmic Gas sh
- SN & AGN feedback SF quer heavy IMF at high-z, SMBH-ga
- Cosmic Ray Feedback
- ・おまけ (宣伝)

Outline

on — halo formation, nonlinear P(k)	10 m
ock heating, cold flow, gal. cluster	10m
nching, metal enrichment, top- Il co-evolution	15m
	15 m
	15m
	2m i

<u>History of Structure Formation in the Big Bang Universe</u></u>

Concordance ACDM model "

WMAP, Planck SN la

$$(\Omega_M, \Omega_\Lambda, \Omega_b, h, \sigma_8, n_s) \approx ($$

$\Omega_{DM} \approx 0.26$

(0.3, 0.7, 0.04, 0.7, 0.8, 0.96)(the so-called "737 cosmology")

"Back-bone of structure"

MultiDark sim. Klypin+'16

Klypin+'16

 10^{3} Ishiyama+21

The Uchuu (宇宙) simulation

1億光年 100 million light yr

0.1 億光年 10 M lyr

First Galaxy Formation in Atomic Cooling Halos

$$\left(\frac{M_{\odot}}{M_{\odot}}\right)^{2/3} \left[\frac{\Delta_c}{18\pi^2}\right]^{1/3} \left(\frac{1+z}{10}\right) \,\mathrm{K},$$

(galaxy clusters)

Cooling Function

$$\Lambda(T) \equiv \frac{\mathscr{C}}{n_{\mathrm{H}}^2}, \quad \text{[erg cm^3 s^{-1}]}$$

C: cooling rate per unit vol. [erg cm⁻³ s⁻¹]

Baryon overdensity

Cosmic Gas: phase diagram

Shull+'12

Shull+'12

Missing Baryon Problem

Shull+'12

Movies: zoom-in sim

Gas Density

AGORA L12 GADGET3-Osaka sim. Shimizu, KN+19

cf. Roca-Fabrega+21 https://sites.google.com/site/santacruzcomparisonproject/

log(Temperature)

log(Metallicity)

1st-order Galaxy formation

Rees & Ostriker '77, White & Rees '78, Fall & Efstathiou '80, White & Frenk '91, Mo, Mao & White '98

Phase Diagram

Metal absorption lines

Tumlinson+'17, ARAA

Necessity of Feedback

SNe & AGN

Shaping Galaxy Mass Function via Feedback

SN Feedback? **∆log**M (M golb/nb) per gal. $\alpha \sim -1.2$ @z=0 density of log **Observed Galaxy Stellar MF (LF)** Number

DM halo mass function $n(M) \propto M^{-2}$ (cf. Press-Schechter '74; Sheth-Tormen '01) Tinker+,

Schechter function

$$\Phi(M) = \frac{dn}{dM} = \Phi^* \left(\frac{M}{M^*}\right)^{\alpha} \exp\left(-\frac{dn}{M}\right)^{\alpha} \exp\left(-\frac{dn$$

Stellar-to-Halo Mass Ratio (SHMR)

(cf. llbert+'10; George+'11; Leauthaud+'12)

<u>SN feedback efficiency</u>

CC SNe: ~ 0.01 SNe per $1 M_{\odot}$ of stars (IMF) & $E_{\rm SN} \sim 10^{51}$ erg per SN

$$E_{\rm w} \sim 10^{51} \times 0.3$$

energy—mass deposition rate

$$\dot{E}_{\rm w} = \epsilon_{\rm w} \dot{M}_{\star} c^2$$
$$\dot{M}_{\rm w} = \eta \dot{M}_{\star},$$

GW efficiency: $\epsilon_w \sim 10^{-6}$

mass-loading factor: $\eta \sim 2$

~30% of this couples to ISM as kinetic E. of galactic wind (GW)

 $\times 0.01 = 3 \times 10^{48} \text{ erg } M_{\odot}^{-1}$

Cen, KN, Ostriker (2005)

SN vs. AGN (SMBH) feedback

$$\epsilon_{K,SN} \sim \frac{10^{48} - 10^{49}}{M_{\odot}c^2} \sim \frac{1}{M_{\odot}c^2}$$

Probably depends on various other factors:

Three Revolutions in Cosmological Hydro Simulations

1990': 1st Revolution

First cosmological, but coarse calculation

Resolution ~100 kpc

e.g. Cen, Ostriker '92-'93 Katz+ '96

Larger scale, medium resolution w. subgrid models

Resolution ~ kpc

e.g. KN+ '01, 04, 06 Springel & Hernquist '03

Zoom-in cosmo. sims. w. better sub grid models

Resolution ~ I0-I00pc

IC code : GRAFIC (Bertschinger) MUSIC (Hahn & Abel '11)

力学的/熱的フィードバック

力学的フィードバック

物理的意味

役割

低分解能での問題

超新星残骸から ISM への運

乱流の駆動、 アウトフローの駆動

冷却長が分解不能 ➡ 超新星残骸の時間発展を (空間分解能の不足)

先行研究

Springel & Hernquist (2003); Kimi Hopkins et al. (2018)

本研究の目標:

- 次に、モデルを実装して孤立銀河シミュレーションで検証する。

	熱的フィードバック
國量注入	衝撃波加熱
	<u>高温 (>10⁶ K) アウトフローの</u> 駆動 重金属を銀河外へ拡散
を解けない	冷却質量が分解不能 ➡ 熱が直ちに放射される (<mark>質量分解能</mark> の不足)
m & Cen (2014);	Stinson et al. (2006); Dalla Vecchia & Schaye (2012 Keller et al. (2014)

力学的、熱的の両方を考慮したフィードバックモデルを構築する。 ・まず、pc スケールの高分解能シミュレーションに基づいてモデル化する。

© Oku+'21, in prep.

Issues with GW Feedback

- Physical state of outflowing gas (multi-phase, ρ, Τ, vel., Μ, p, E)
- Acceleration sites (disk? near SNe? above mid-plane? CGM?)
- Ultimate fate of outflows (unbound? recycled?)
- Morphologies (biconical, spherical, filamentary, clumpy)
- Acceleration mechanism (mechanical, radiation, CR)

Multi-phase outflow from galactic plane: cut-out sim.

fast-moving, **low-density outflow**

 $-512 \text{ pc} \leq x, y \leq 512 \text{ pc}$

as well as warm fountain (fall-back)

Athena MHD code

1 x 1 x 9 kpc domain

 $\Delta x = 4 \text{ pc}$

Kim & Ostriker '18

Resolved SN-driven winds

GADGET-3 sim. dwarf gal.

 $M_{\rm vir} = 10^{10} M_{\odot}$ $R_{\rm vir} = 44 \, \rm kpc$ *c* = 17

 $m_{\rm gas} = 1 M_{\odot}$ $\epsilon_{\rm g}, h_{\rm s} = 0.3\,{\rm pc}$

Hu '19

cf. Hill+12; Girichidis+16; Martizzi+16; Gatto+17; Hu+16,17; Li+17; Kim & Ostriker '18

Convergence of resolved sim

GIZMO SPH FIRE-2 simulation (Ma+20)

Katz+19, 21

- importance of low-Z CCSN
- top-heavy IMF w. reduced [C/O]
- [O₁] could be useful too.
- PDR & clumpy ISM are still unresolved.

cf. Vallini+15; Pallottini+14,15,17,19; Moriwaki+18; Arata+20 ...

AGORA A High-resolution Galaxy Simulations Comparison Initiative: www.AGORAsimulations.org

Contact: santacruzgalaxy@gmail.com

• Flagship paper by J. Kim et al. (2014), 2nd paper by J. Kim et al. (2016), 3rd paper by S. Roca-Fabrega et al. (2021)

http://agorasimulations.org

AGORA Goal & Team

• GOAL: A collaborative, multiplatform study to raise the realism and predictive power of galaxy formation simulations

• TEAM: 160+ participants from 60+ institutions worldwide, representing 9+ codes as of 2021

 DATA SHARING: Simulations outputs and analysis softwares will be shared with the community

AGORA Paper III: Cosmo-Run

- 4 calibration steps
- only in the 4th step, we turn on our favorite SN feedback model.
- the only constraint: $M_{\star} \sim (1-5) \times 10^9 h^{-1} M_{\odot}$ targeting the abundance matching result at z=4.

Code	Stellar feedback	SN & metal production model	Effective metal yield	Runtim
Art-I	T+K, RP	SN Type Ia/II, AGB stars*	0.033	$E_{\rm thermal} = 2 \times 10^{51} {\rm ergs/SI}$
Enzo	Т	SN Type II	0.032	$E_{\rm thermal} = 2$
RAMSES	T, DC	SN Type II	0.033	$E_{\rm thermal} = 4 \times 10^{51} {\rm ergs/SN}, {\rm c}$
CHANGA	T+S	SN Type Ia/II, AGB stars**	0.032	$E_{\rm thermal} = 2$
GADGET-3	T+K, RP, DC	SN Type Ia/II, AGB stars	0.025	$E_{ m SN}=4 imes10^{49}{ m ergs}/{ m M}_\odot,$
GEAR	T, DC	SN Type Ia/II	0.024	$E_{\rm thermal} = 4.5 \times 10^5$
GIZMO	T+K	SN Type II	0.033	$E_{\rm SN} = 5$

ne parameters N, $p = 3.6 \times 10^6 \,\mathrm{M_{\odot} \, km \, s^{-1}}/\mathrm{SN}$ $5 \times 10^{52} \, \mathrm{ergs/SN}$ $\sigma_{\rm min} = 100 \, {\rm km \, s^{-1}}, \ T_{\rm delay} = 10 \, {\rm Myr}$ $5 \times 10^{51} \, \mathrm{ergs/SN}$ $T_{\text{delay}} = t_{\text{hot}}$ (see Section 3.2.5) ¹ ergs/SN, $T_{\text{delay}} = 5 \text{ Myr}$ $\times 10^{51} \, \mathrm{ergs}/\mathrm{SN}$

Roca-Fabrega+21

CosmoRun model z=8, 7, 6, 5, 4

y (kpc)

4th AGORA paper will be CGM metallicity (e.g. O IV emission diagnostic; Strawn+21, in prep.)

SPH codes

AGN feedback

(Active Galactic Nuclei)

Violent AGN feedback (quasar mode)

<u>AGN feedback efficiency</u>

Bondi-Hoyle-Lyttleton mass accretion rate:

Radiative output from accretion:

radiative efficiency ϵ_r (rest-mass energy conversion)

 $\alpha \sim 100$

$$L_{\rm a} = \epsilon_{\rm r} c^2 \dot{M}_{\rm a},$$

 $\dot{m}_{a} = \alpha \frac{4\pi G M_{\rm BH}^{2} \rho}{(c_{\rm s}^{2} + v^{2})^{3/2}}$

Shakura & Sunyaev '73

$$\epsilon_{\rm f} L_a = \epsilon_{\rm f} \epsilon_{\rm r} \dot{M}_a c^2$$

Booth & Schaye '09; Dubois+'12

 $M_{BH}-\sigma$ relation

Di Matteo+ '05

R

AGN feedback energy
adiative luminosity:
$$L = \epsilon_r \dot{M}_{acc} c^2 \sim 6 \times 10^{45} \left(\frac{\epsilon_r}{0.1}\right) \left(\frac{\dot{M}_{acc}}{1 \, M_{\odot} \, \mathrm{yr}^{-1}}\right) \mathrm{erg \, s}^{-1}$$

Feedback Energy: $E_f = \int \dot{E}_f \, dt = \epsilon_f \, \epsilon_r c^2 \int \dot{M}_{acc} dt$

E.g., growth to 10⁸ M $_{\odot}$ SMBH: $E_f = 2 \times 10^6$

Bulge potential energy: $E_{bulge} \sim M_{bulge} \sigma_*^2 \sim$

So, $\epsilon_f > 0.01$ can give $E_f > E_{\text{bulge}}$

$$\epsilon_{f}\left(rac{\epsilon_{r}}{0.1}
ight)\left(rac{M_{BH}}{10^{8}\,M_{\odot}}
ight)\mathrm{erg}$$
 (cumulative feedback e

$$\sim 2 \times 10^{59} \left(\frac{M_{\rm bulge}}{10^{11} M_{\odot}}\right) \left(\frac{\sigma_*}{300 \,{\rm km \, s^{-1}}}\right)^2 {\rm erg}$$

 $\frac{M_{\rm bulge}}{\sim} \sim 10^{-3}$ $M_{
m BH}$

Ferrarese & Meritt '00

AGN jet

$M_{\rm BH} \sim 6.5 \times 10^9 M_{\odot}$

400 pc

https://www.sciencesource.com/archive/Supergiant-Elliptical-Galaxy--M87--NGC-4486-SS2712619.html

IllustrisTNG

Two-mode AGN feedback model

Eddington-limited accretion: $\dot{M} = \min(\dot{M}_{Bondi}, \dot{M}_{Edd})$,

$$\dot{M}_{\text{Bondi}} = \frac{4\pi G^2 M_{\text{BH}}^2 \rho}{c_s^3}, \qquad \dot{M}_{\text{Edd}} = \frac{4\pi G M_{\text{BH}} m_p}{\varepsilon_r \sigma_{\text{T}}} c,$$

AREPO code — voronoi tessellation

high $\frac{\dot{E}_{\text{therm}} = 0.02 \dot{M} c^2}{\text{thermal (quasar) mode}}$

$$\dot{\mathcal{E}}_{kin} = \mathcal{E}_{f,kin} \dot{M} c^2$$
, kinetic (jet) mode (maintenance m
 $_{0^9} \quad \mathcal{E}_{f,kin} = \min\left(\frac{\rho}{0.05 \rho_{SFthresh}}, 0.2\right), \quad \text{weaker coupling in low-p environment}$

 10^{8}

Weinberger+'18

relation MBH Ο

Too small σ in simulations? Or, too massive seed + too efficient growth?

(at low-mass end)

Li+'19

	<mark>Illustris</mark>	TNG100	TNG300	- Horizon-AGN	EAGLE	
Cosmology						
Ω_{Λ}	0.7274	0.6911	0.6911	0.728	0.693	0.
Ω_{m}	0.2726	0.3089	0.3089	0.272	0.307	0.
$\Omega_{ m b}$	0.0456	0.0486	0.0486	0.045	0.0483	0.0
σ_8	0.809	0.8159	0.8159	0.81	0.8288	0.8
n_{s}	0.963	0.9667	0.9667	0.967	0.9611	0.9
$H_0 ({\rm kms^{-1}Mpc^{-1}})$	70.4	67.74	67.74	70.4	67.77	68
Resolution						
Box side length (cMpc)	106.5	110.7	302.6	142.0	100.0	147
Dark matter mass reso. (M_{\odot})	6.26×10^6	7.5×10^{6}	5.9×10^7	8×10^7	$9.7 imes 10^6$	$9.6 \times$
Baryonic mass reso. (M_{\odot})	1.26×10^{6}	1.4×10^{6}	1.1×10^7	2×10^{6}	1.81×10^{6}	1.82 >
Spatial resolution (pkpc)	0.71	0.74	1.48	1.0	0.7	
Gravitational softening (ckpc)	1.4	1.48 $(z \ge 1)$	$2.96 \ (z \ge 1)$		$2.66 \ (z \ge 2.8)$	0.7
		/0.74 pkpc	/1.48 pkpc		$/ \max 0.7 \text{ pkpc}$	
Baryonic softening (ckpc)	1.4 ckpc $(z \ge 1)$	1.48 $(z \ge 1)$	$2.96 \ (z \ge 1)$		$2.66 \ (z \ge 2.8)$	
	/0.7 pkpc	/0.74 pkpc	/1.48 pkpc		$/ \max 0.7 \text{ pkpc}$	
Seeding	_			_	_	
BH seed mass (M_{\odot})	1.42×10^{5}	1.18×10^{6}	1.18×10^{6}	10^{5}	1.48×10^{5}	1.49 >
Seeding prescriptions	$M_{\rm h}/{\rm M}_{\odot} \ge$	$M_{\rm h}/{ m M_{\odot}} \ge$	$M_{\rm h}/{ m M_{\odot}} \geqslant$	$n \geqslant 0.1 { m H/cm^3}$	$M_{\rm h}/{ m M}_{\odot} \geqslant$	M_{\star}/N
	7.1×10^{10}	7.4×10^{10}	7.4×10^{10}	$\sigma \ge 100 \mathrm{km/s}$	1.48×10^{10}	10^{9}
Radiative efficiency ϵ_r	0.2	0.2	0.2	0.1	0.1	0.
Accretion						
Model	Bondi	Bondi + mag. field	Bondi + mag. field	Bondi	Bondi + visc.	Bondi +
Boost factor	$\alpha = 100$	-	-	density-dependent	-	$\alpha =$
SN feedback						
Model	kinetic	kinetic	kinetic	kinetic/thermal	thermal	kine
AGN feedback						
Single or 2 modes	2 modes	2 modes	2 modes	2 modes	single mode	2 m
High acc rate model	isotropic thermal	isotropic thermal	isotropic thermal	isotropic thermal	isotropic thermal	kine
Feedback efficiency	$0.05 \times 0.2 = 0.01$	$0.1 \times 0.2 = 0.02$	$0.1 \times 0.2 = 0.02$	$0.15 \times 0.1 = 0.015$	$0.1 \times 0.15 = 0.015$	0.03×0.1
Low acc rate model	thermal hot bubble	pure kinetic winds	pure kinetic winds	kinetic bicanonical winds	-	kinetic/
Feedback efficiency	$0.35 \times 0.2 = 0.07$	$\leq 0.2 \times 0.2 = 0.04$	$\leq 0.2 \times 0.2 = 0.04$	$1 \times 0.1 = 0.1$	-	0.3×0.1
Transition btw. modes	$f_{\rm Edd}=0.05$	$\min(0.002 \left(rac{M_{ m BH}}{10^8 { m M}_{\odot}} ight)^2, 0.1)$	$\min(0.002 \left(rac{M_{ m BH}}{10^8 { m M}_{\odot}} ight)^2, 0.1)$	0.01	-	0.

Habouzit+21

- Popular

10 cMpc PCR regions z=3

<u>High-res. jet models</u>

x (kpc) Bourne & Sijacki '17 AREPO

Martizzi+19 ~200 pc **Athena**

cf. 大須賀さんtalk

CR feedback

(Cosmic Ray)

<u>CR feedback</u>

- non-thermal component comparable E-density to Eth, Emag, Eturb
- transport mechanism, interaction with EM waves coupling with thermal plasma (e.g. Zweibel '13,17; Amato & Blasi'18)
- Sources of scattering? streaming instability, background turbulence -> CR m.f.p. Kulsrud & Pearce'69 Yan & Lazarian '02
- Confine, and isotropize the CR distribution
- Can provide significant pressure in CGMs
- Earlier work: effective diffusion, grey, steady approximations

Analytic: Ipavich '75; Boulares & Cox 90; Breitschw **Simulation:** Booth+13; Pakmor+16; Ruszkowski+1

- Analytic: Ipavich '75; Boulares & Cox 90; Breitschwerdt+91; Everett+08; Socrates+08; Mao & Ostriker'18;
- Simulation: Booth+13; Pakmor+16; Ruszkowski+17; Wiener+17; Chan+19; Hopkins+20; Ji+20; Su+20; Hopkins+21;

FIRE-2 MHD sim. + CR – w. diffusion, streaming in dwarf, L* galaxies

$$\begin{aligned} \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho v) &= 0, \\ \frac{\partial \rho v}{\partial t} + \nabla \cdot (\rho v \otimes v + P_T \mathbb{I} - \mathbf{B} \otimes \mathbf{B}) &= 0, \\ \frac{\partial \rho e}{\partial t} + \nabla \cdot [(\rho e + P_T) v - (v \cdot \mathbf{B}) \mathbf{B}] \\ &= P_{cr} \nabla \cdot v + \Gamma_{st} + S_g - \Gamma_g, \\ \frac{\partial \mathbf{B}}{\partial t} + \nabla \cdot (\mathbf{v} \otimes \mathbf{B} - \mathbf{B} \otimes \mathbf{v}) &= 0, \\ \frac{\partial e_{cr}}{\partial t} + \nabla \cdot \mathbf{F}_{cr} &= \mathbf{v} \cdot \nabla P_{cr} - \Gamma_{st} + S_{cr} - \Gamma_{cr}, \\ CB \log n \\ \end{aligned}$$

 $P_{\rm T}$: total pressure (thermal + magnetic + CR) $P_{\rm cr} = (\gamma_{\rm cr} - 1) e_{\rm cr}$ CR pressure $\Gamma_{\rm st} = -v_{\rm st} \cdot \nabla P_{\rm cr} \ (>0)$ Streaming loss $(c_{\rm s}^2)_{\rm eff} = \partial P / \partial \rho = (c_{\rm s}^2)_{\rm gas} + \gamma_{\rm cr} P_{\rm cr} / \rho,$

 $F_{\rm cr} = (e_{\rm cr} + P_{\rm cr})(v + v_{\rm st}) + F_{\rm di}$ CR energy flux advection & streaming

 $F_{\rm di} = -\kappa \hat{B} \otimes \hat{B} \cdot \nabla e_{\rm cr}$ pure diffusion (zeroth moment) (-> later expanded to "two moment")

\mathcal{K} : effective diffusion coefficient

Lagrangian, finite-volume form:

$$\frac{DE_{\rm cr}}{Dt} = -\int_{\Omega} d^3 \boldsymbol{x} \left\{ \begin{array}{l} P_{\rm cr} \left(\nabla \cdot \boldsymbol{v} \right) + \Gamma_{\rm st} + \nabla \cdot \tilde{\boldsymbol{F}}_{\rm cr} \right\}, \\ \text{adiabatic term} \end{array} \right.$$

$$\tilde{\boldsymbol{F}}_{\rm cr} \equiv \boldsymbol{F}_{\rm cr} - \boldsymbol{v} \left(\boldsymbol{e}_{\rm cr} + \boldsymbol{P}_{\rm cr} \right) = \boldsymbol{v}_{\rm st} \left(\boldsymbol{e}_{\rm cr} + \boldsymbol{P}_{\rm cr} \right) + \boldsymbol{F}_{\rm di}.$$

 $E_{\rm cr}^i = \int_{\Omega_i} e_{\rm cr} \, {\rm d}^3 x$ conserved total CR energy

 $\gamma_{\rm cr} = 4/3$

Chan+19

CR energy injection: $\Delta E_{\rm cr} = \epsilon_{\rm cr} E_{\rm SNe}$ $\epsilon_{\rm cr}$ (=0.1, default)

Hadronic & Coulomb losses:

$$\Gamma_{\rm cr} = \tilde{\Lambda}_{\rm cr} \, e_{\rm cr} \, n_{\rm n} = (\tilde{\Lambda}_{\rm cr,had} + \tilde{\Lambda}_{\rm cr,\,Cou}) \, e_{\rm cr} \, n_{\rm n}$$

= 5.8 × 10⁻¹⁶ (1 + 0.28 x_e) $\left(\frac{e_{\rm cr}}{\rm erg\,cm^{-3}}\right) \left(\frac{n_{\rm n}}{\rm cm^{-3}}\right) \, \text{erg\,cm^{-3}s^{-1}},$

(Volk+96; Ensslin+97; Guo & Oh '08)

Volumetric gas heating:

$$S_{\text{gas}} = 0.98 \times 10^{-16} \,(1 + 1.7 \, x_e) \left(\frac{e_{\text{cr}}}{\text{erg cm}^{-3}}\right) \times \left(\frac{n_{\text{n}}}{\text{cm}^{-3}}\right) \,\text{erg cm}^{-3} \,\text{s}^{-1}.$$

Update CR flux as

$$\boldsymbol{F}_{\mathrm{cr}} \rightarrow \boldsymbol{F}_{\mathrm{cr}}(1 - \tilde{\Lambda}_{\mathrm{cr}} n_{\mathrm{n}} \Delta t).$$

$$F_{\rm cr} \rightarrow F_{\rm cr} + \Delta F_{\rm cr}$$

 $\Delta F_{\rm cr} = \Delta e_{\rm cr} \, \tilde{c} \, \hat{r}$

Rather than setting $\tilde{F}_{cr} = -\kappa \nabla e_{cr}$, 2-moment method: explicitly solve $\frac{1}{\tilde{c}^2} \left[\frac{\partial \tilde{\boldsymbol{F}}_{\rm cr}}{\partial t} + \nabla \cdot \left(\boldsymbol{v} \otimes \tilde{\boldsymbol{F}}_{\rm cr} \right) \right] + \nabla_{\parallel} P_{\rm cr} = -\frac{(\gamma_{\rm cr}-1)}{\kappa^*} \tilde{\boldsymbol{F}}_{\rm cr},$ $\nabla_{\parallel} P_{\rm cr} \equiv \hat{\boldsymbol{B}} \otimes \hat{\boldsymbol{B}} \cdot \nabla P_{\rm cr},$ Composite parallel (B-field aligned) diffusion coeff:

$$\kappa^* = \kappa + rac{v_{
m st}(e_{
m cr} + P_{
m cr})}{|\hat{\boldsymbol{B}} \cdot \nabla e_{
m cr}|},$$

(Snodin+06; Jiang & Oh '08; Thomas & Pfrommer '19)

Chan+19

 $L\star$ Galaxy

Isotropic diffusion coeff. $\kappa \sim 3 \times 10^{29} \,\mathrm{cm}^2 \,\mathrm{s}^{-1}$ is favored against γ -ray obs. (cf. Quartaert+21) (cf. Lacki+11; ...)

FIRE-2 MHD cosmo sim. + CR : follow-up to Chan+19

Hopkins+21

<u>Slow outflow produced by CR</u>

No CR

With CR

FIRE-2 sim. Hopkins+21

FIRE-2 sim.

Hopkins+21

Temperature structure above disk plane

MHD with CRS

$$\frac{\partial U}{\partial t} + \nabla \cdot \mathbf{F} = S,$$

Heaviside-Lorentz system of units.

(2)

Pressure
$$P = P_{th} + P_{cr} + \frac{B^2}{2}$$
Energy
density $\varepsilon = \varepsilon_{th} + \frac{\rho v^2}{2} + \frac{B^2}{2}$ (w.out ε_{cr})

Streaming vel.

$$\boldsymbol{v}_{st} = -\boldsymbol{v}_{A} \operatorname{sgn}(\boldsymbol{B} \cdot \nabla P_{cr}) = -\frac{\boldsymbol{B}}{\sqrt{\rho}} \frac{\boldsymbol{B} \cdot \nabla P_{cr}}{|\boldsymbol{B} \cdot \nabla P_{cr}|}$$

EOS:

$$P_{th} = (\gamma_{th} - 1) \varepsilon_{th}, \quad \gamma_{th} = 5/3$$

$$P_{cr} = (\gamma_{cr} - 1) \varepsilon_{cr}, \quad \gamma_{cr} = 4/3 \text{ (in rela. limit)}$$

$$\frac{\partial \varepsilon_{\rm cr}}{\partial t} + \nabla \cdot \left[\varepsilon_{\rm cr} (\boldsymbol{v} + \boldsymbol{v}_{\rm st}) - \kappa_{\varepsilon} \boldsymbol{b} \left(\boldsymbol{b} \cdot \nabla \varepsilon_{\rm cr} \right) \right]$$
$$= -P_{\rm cr} \nabla \cdot (\boldsymbol{v} + \boldsymbol{v}_{\rm st}) + \Lambda_{\rm cr} + \Gamma_{\rm cr}.$$

(Enslin+07; Kulsrud & Pearce'69; Wiener+13,16)

AREPO; Pfrommer+17

<u>Spectrally resolved CR</u>

Girichidis+20, 21

Fokker-Planck eq.

$$\frac{\partial f}{\partial t} = \underbrace{-\boldsymbol{v} \cdot \boldsymbol{\nabla} f}_{\text{advection}} + \underbrace{\boldsymbol{\nabla} \cdot (\boldsymbol{\mathsf{D}}_{xx} \cdot \boldsymbol{\nabla} f)}_{\text{diffusion}} + \underbrace{\frac{1}{3} (\boldsymbol{\nabla} \cdot \boldsymbol{v}) p \frac{\partial f}{\partial p}}_{\text{adiabatic process}} + \underbrace{\frac{1}{p^2} \frac{\partial}{\partial p} \left[p^2 \left(b_l f + D_{pp} \frac{\partial f}{\partial p} \right) \right]}_{\text{sources}} + \underbrace{\frac{1}{p^2} \frac{\partial}{\partial p} \left[p^2 \left(b_l f + D_{pp} \frac{\partial f}{\partial p} \right) \right]}_{\text{sources}} + \underbrace{\frac{1}{p^2} \frac{\partial}{\partial p} \left[p^2 \left(b_l f + D_{pp} \frac{\partial f}{\partial p} \right) \right]}_{\text{sources}} + \underbrace{\frac{1}{p^2} \frac{\partial}{\partial p} \left[p^2 \left(b_l f + D_{pp} \frac{\partial f}{\partial p} \right) \right]}_{\text{sources}} + \underbrace{\frac{1}{p^2} \frac{\partial}{\partial p} \left[p^2 \left(b_l f + D_{pp} \frac{\partial f}{\partial p} \right) \right]}_{\text{sources}} + \underbrace{\frac{1}{p^2} \frac{\partial}{\partial p} \left[p^2 \left(b_l f + D_{pp} \frac{\partial f}{\partial p} \right) \right]}_{\text{sources}} + \underbrace{\frac{1}{p^2} \frac{\partial}{\partial p} \left[p^2 \left(b_l f + D_{pp} \frac{\partial f}{\partial p} \right) \right]}_{\text{sources}} + \underbrace{\frac{1}{p^2} \frac{\partial}{\partial p} \left[p^2 \left(b_l f + D_{pp} \frac{\partial f}{\partial p} \right) \right]}_{\text{sources}} + \underbrace{\frac{1}{p^2} \frac{\partial}{\partial p} \left[p^2 \left(b_l f + D_{pp} \frac{\partial f}{\partial p} \right) \right]}_{\text{sources}} + \underbrace{\frac{1}{p^2} \frac{\partial}{\partial p} \left[p^2 \left(b_l f + D_{pp} \frac{\partial f}{\partial p} \right) \right]}_{\text{sources}} + \underbrace{\frac{1}{p^2} \frac{\partial}{\partial p} \left[p^2 \left(b_l f + D_{pp} \frac{\partial f}{\partial p} \right) \right]}_{\text{sources}} + \underbrace{\frac{1}{p^2} \frac{\partial}{\partial p} \left[p^2 \left(b_l f + D_{pp} \frac{\partial f}{\partial p} \right) \right]}_{\text{sources}} + \underbrace{\frac{1}{p^2} \frac{\partial}{\partial p} \left[p^2 \left(b_l f + D_{pp} \frac{\partial f}{\partial p} \right) \right]}_{\text{sources}} + \underbrace{\frac{1}{p^2} \frac{\partial}{\partial p} \left[p^2 \left(b_l f + D_{pp} \frac{\partial f}{\partial p} \right) \right]}_{\text{sources}} + \underbrace{\frac{1}{p^2} \frac{\partial}{\partial p} \left[p^2 \left(b_l f + D_{pp} \frac{\partial f}{\partial p} \right]}_{\text{sources}} + \underbrace{\frac{1}{p^2} \frac{\partial}{\partial p} \left[p^2 \left(b_l f + D_{pp} \frac{\partial f}{\partial p} \right]}_{\text{sources}} + \underbrace{\frac{1}{p^2} \frac{\partial}{\partial p} \left[p^2 \left(b_l f + D_{pp} \frac{\partial f}{\partial p} \right]}_{\text{sources}} + \underbrace{\frac{1}{p^2} \frac{\partial}{\partial p} \left[p^2 \left(b_l f + D_{pp} \frac{\partial f}{\partial p} \right]}_{\text{sources}} + \underbrace{\frac{1}{p^2} \frac{\partial}{\partial p} \left[p^2 \left(b_l f + D_{pp} \frac{\partial f}{\partial p} \right]}_{\text{sources}} + \underbrace{\frac{1}{p^2} \frac{\partial}{\partial p} \left[p^2 \left(b_l f + D_{pp} \frac{\partial f}{\partial p} \right]}_{\text{sources}} + \underbrace{\frac{1}{p^2} \frac{\partial}{\partial p} \left[p^2 \left(b_l f + D_{pp} \frac{\partial f}{\partial p} \right]}_{\text{sources}} + \underbrace{\frac{1}{p^2} \frac{\partial}{\partial p} \left[p^2 \left(b_l f + D_{pp} \frac{\partial f}{\partial p} \right]}_{\text{sources}} + \underbrace{\frac{1}{p^2} \frac{\partial}{\partial p} \left[p^2 \left(b_l f + D_{pp} \frac{\partial f}{\partial p} \right]}_{\text{sources}} + \underbrace{\frac{1}{p^2} \frac{\partial}{\partial p} \left[p^2 \left(b_l f + D_{p$$

$$= \underbrace{-\boldsymbol{v} \cdot \boldsymbol{\nabla} f}_{\text{advection}} + \underbrace{\boldsymbol{\nabla} \cdot (\boldsymbol{\mathsf{D}}_{xx} \cdot \boldsymbol{\nabla} f)}_{\text{diffusion}} + \underbrace{\frac{1}{3} (\boldsymbol{\nabla} \cdot \boldsymbol{v}) p \frac{\partial f}{\partial p}}_{\text{adiabatic process}} + \underbrace{\frac{1}{p^2} \frac{\partial}{\partial p} \left[p^2 \left(b_l f + D_{pp} \frac{\partial f}{\partial p} \right) \right]}_{\text{sources}} + \underbrace{\frac{1}{p^2} \frac{\partial}{\partial p} \left[p^2 \left(b_l f + D_{pp} \frac{\partial f}{\partial p} \right) \right]}_{\text{sources}} + \underbrace{\frac{1}{p^2} \frac{\partial}{\partial p} \left[p^2 \left(b_l f + D_{pp} \frac{\partial f}{\partial p} \right) \right]}_{\text{sources}} + \underbrace{\frac{1}{p^2} \frac{\partial}{\partial p} \left[p^2 \left(b_l f + D_{pp} \frac{\partial f}{\partial p} \right) \right]}_{\text{sources}} + \underbrace{\frac{1}{p^2} \frac{\partial}{\partial p} \left[p^2 \left(b_l f + D_{pp} \frac{\partial f}{\partial p} \right) \right]}_{\text{sources}} + \underbrace{\frac{1}{p^2} \frac{\partial}{\partial p} \left[p^2 \left(b_l f + D_{pp} \frac{\partial f}{\partial p} \right) \right]}_{\text{sources}} + \underbrace{\frac{1}{p^2} \frac{\partial}{\partial p} \left[p^2 \left(b_l f + D_{pp} \frac{\partial f}{\partial p} \right) \right]}_{\text{sources}} + \underbrace{\frac{1}{p^2} \frac{\partial}{\partial p} \left[p^2 \left(b_l f + D_{pp} \frac{\partial f}{\partial p} \right) \right]}_{\text{sources}} + \underbrace{\frac{1}{p^2} \frac{\partial}{\partial p} \left[p^2 \left(b_l f + D_{pp} \frac{\partial f}{\partial p} \right) \right]}_{\text{sources}} + \underbrace{\frac{1}{p^2} \frac{\partial}{\partial p} \left[p^2 \left(b_l f + D_{pp} \frac{\partial f}{\partial p} \right) \right]}_{\text{sources}} + \underbrace{\frac{1}{p^2} \frac{\partial}{\partial p} \left[p^2 \left(b_l f + D_{pp} \frac{\partial f}{\partial p} \right) \right]}_{\text{sources}} + \underbrace{\frac{1}{p^2} \frac{\partial}{\partial p} \left[p^2 \left(b_l f + D_{pp} \frac{\partial f}{\partial p} \right) \right]}_{\text{sources}} + \underbrace{\frac{1}{p^2} \frac{\partial}{\partial p} \left[p^2 \left(b_l f + D_{pp} \frac{\partial f}{\partial p} \right) \right]}_{\text{sources}} + \underbrace{\frac{1}{p^2} \frac{\partial}{\partial p} \left[p^2 \left(b_l f + D_{pp} \frac{\partial f}{\partial p} \right) \right]}_{\text{sources}} + \underbrace{\frac{1}{p^2} \frac{\partial}{\partial p} \left[p^2 \left(b_l f + D_{pp} \frac{\partial f}{\partial p} \right]}_{\text{sources}} + \underbrace{\frac{1}{p^2} \frac{\partial}{\partial p} \left[p^2 \left(b_l f + D_{pp} \frac{\partial f}{\partial p} \right]}_{\text{sources}} + \underbrace{\frac{1}{p^2} \frac{\partial}{\partial p} \left[p^2 \left(b_l f + D_{pp} \frac{\partial f}{\partial p} \right]}_{\text{sources}} + \underbrace{\frac{1}{p^2} \frac{\partial}{\partial p} \left[p^2 \left(b_l f + D_{pp} \frac{\partial f}{\partial p} \right]}_{\text{sources}} + \underbrace{\frac{1}{p^2} \frac{\partial}{\partial p} \left[p^2 \left(b_l f + D_{pp} \frac{\partial f}{\partial p} \right]}_{\text{sources}} + \underbrace{\frac{1}{p^2} \frac{\partial}{\partial p} \left[p^2 \left(b_l f + D_{pp} \frac{\partial f}{\partial p} \right]}_{\text{sources}} + \underbrace{\frac{1}{p^2} \frac{\partial}{\partial p} \left[p^2 \left(b_l f + D_{pp} \frac{\partial f}{\partial p} \right]}_{\text{sources}} + \underbrace{\frac{1}{p^2} \frac{\partial}{\partial p} \left[p^2 \left(b_l f + D_{pp} \frac{\partial f}{\partial p} \right]}_{\text{sources}} + \underbrace{\frac{1}{p^2} \frac{\partial}{\partial p} \left[p^2 \left(b_l f + D_{pp} \frac{\partial f}{\partial p} \right]}_{\text{sources}} + \underbrace{\frac{1}{p^2} \frac{\partial}{\partial p} \left[p^2 \left(b_l f + D_{pp} \frac{\partial f}{\partial$$

$$f = f(\boldsymbol{x}, \boldsymbol{p}, t) = \mathrm{d}^6 N/(\mathrm{d}^3 x \, \mathrm{d}^3 \boldsymbol{p})$$

Piecewise power-law ptcl distrib:

$$f(p) = \sum_{i=0}^{N_{\text{spec}}} f_i(p)$$

= $\sum_{i=0}^{N_{\text{spec}}} f_{i-1/2} \left(\frac{p}{p_{i-1/2}}\right)^{-q_i} \theta\left(p - p_{i-1/2}\right) \theta\left(p_{i+1/2} - p\right)$

Number & E density

$$n_{i} = \int_{p_{i-1/2}}^{p_{i+1/2}} 4\pi p^{2} f(p) dp,$$

$$e_{i} = \int_{p_{i-1/2}}^{p_{i+1/2}} 4\pi p^{2} f(p) T(p) dp$$

$$T(p) = \sqrt{p^2 c^2 + m_{\rm p}^2 c^4} - m_{\rm p} c^2$$

CR pressure

$$P_{\rm cr} = \int_0^\infty \frac{4\pi}{3} c \, p^3 \beta(p) f(p) \mathrm{d}p,$$

$$P_{\rm cr} = \sum_{i=1}^{N_{\rm spec}} P_{\rm cr,i} = \frac{4\pi}{3} \sum_{i=1}^{N_{\rm spec}} \int_{p_{i-1/2}}^{p_{i+1/2}} \frac{f_i(p) p^4}{\sqrt{m_p^2 c^4 + p_i^2}}$$

cf. Miniati+01; Yang & Ruszkowski'17; Ogrodnik+21

<u>Spectrally resolved</u> <u>CR</u>

initial outflow front by CRs w. 200 - 600 Gev/c

subsequent outflow by ~10 Gev/c

Girichidis+21

Temporally & Spatially varying CR spectrum

Girichidis+21

Summary & Issues

- Multi-scale, multi-phase structures in the universe.
- SNe, AGN, CR feedback: all seems relevant for galactic wind
- SN FB model: rapidly improving at \leq pc level clustered SNe
- AGN FB model : still highly uncertain; intermittent / two phase growth of SMBH?
- CR FB model: details of propagation model diffusion coefficient, scattering, subgrid turbulence, spectral decomposition

追加情報(おまけ)

https://www.phys.sci.osaka-u.ac.jp/nambu/#Section4

木満演会に 人限人学周年記念事業の一環として 開催されます。

大阪大学周年記念事業 特別南部コロキウム

大阪大学 大学院理学研究科附属 基礎理学プロジェクト研究センター 理論科学研究拠点 大阪大学総合学術博物館 湯川記念室

 $_{2021 \pm 10} 10_{\rm F} 23_{\rm F(\pm)\ 13:00-15:40}$

はじめに

長峯 健太郎 先生 NACAMENE Kentaro 院理学研究科附属 基礎理学プロジェクト研究センター 理論科学研究拠点拠点長 大阪大学 大学院理学研究科 宇宙地球科学専攻 教授

湯川秀樹博士と大阪大学 ノーベル賞はかくして生まれた

細谷裕先生 HOSOTANI Yataka 大阪大学 名誉教授

14:05-14:15 質疑 [10min.]

14:15-14:25 休憩 [10min.]

素粒子物理の最先端 ~湯川・南部と標準理論を超える新物理~

兼村 晋哉 先生 KANEMUTA Shinya 1 → ■ □ >>> / → ■
i大学総合学術博物館 湯川記念室委員長

15:25-15:35 質疑 [10min.]

https://sites.google.com/view/dmseminars

暗黒物質の質量分布や速度分布には、観測・理論・シミュレーションから様々な示唆が与えられていま す。これらは直接検出実験・間接検出実験に影響し、素粒子実験・理論などの隣接領域でも重要です。暗 黒物質分布についての知見を広げ、各自の研究分野にフィードバックすることを目的として、セミナーシ リーズを開催することになりました。

林航平(一関高専)、東野聡(神戸大学)、身内賢太朗(神戸大)、長尾桂子(岡山理科大)、中竜大(東邦大)

暗黒物質分布セミナーseries

林さん、岡本さんのセミナーに続き、

第3回

長峯 健太郎(大阪大学)

○日時:2021年10月1日(金)14:00-16:00

○タイトル:宇宙の大規模構造とダークマター

○概要:

前2回の講演ですでに銀河スケールでの諸問題はかなりカバーされているので、今回は主に宇宙の 大規模構造の観点からダークマターについて議論する。空間スケールとしては、100kpcから 200Mpc程が対象となる。トピックとしては、大規模構造形成でダークマターが果たす役割、銀河

World Scientific Series in Astr 🛞 physics

Volume 1 Galaxy Formation and Evolution

Rennan Barkana

Giovanni G Fazio editor

• World Scientific

Volume 2 Numerical Simulations in Cosmology Kentaro Nagamine editor

Giovanni G Fazio editor

World Scientific

Published in Mar 2018.

Amazon, or

World Scientific

The

Volume 4: Dark Matter Jihn E Kim

Giovanni G Fazio editor

World Scientific

https://www.worldscientific.com/worldscibooks/10.1142/9496#t=toc

