Exact solution for wave scattering from black holes

Hayato Motohashi (Kogakuin Univ.)

HM, Sousuke Noda, arXiv:2101.xxxxx

2021.1.18 ICRR workshop "Black Hole Astrophysics with VLBI: Multi-Wavelength and Multi-Messenger Era"

Contents

- Introduction
- Exact solution
- Scattering problem
- Applications
- Summary

The Nobel Prize in Physics 2017

© Nobel Media AB. Photo: A.

Rainer Weiss

Prize share: 1/2

Mahmoud

© Nobel Media AB. Photo: A.Mahmoud Barry C. Barish Prize share: 1/4

© Nobel Media AB. Photo: A.Mahmoud Kip S. Thorne Prize share: 1/4

The Nobel Prize in Physics 2020

Elmehed. Roger Penrose Prize share: 1/2

© Nobel Media. III. Niklas Elmehed. Andrea Ghez Prize share: 1/4

nobelprize.org

Background spacetime geometry

Perturbations

$$g_{\mu\nu} = \bar{g}_{\mu\nu} + h_{\mu\nu}$$

General Relativity

The uniqueness theorem

Stationary axisym. BH in GR

M : Mass *a* : Angular momentum

Vishveshwara (1980)

General Relativity

Geometrical optics

Scattering from black holes

- While one can numerically integrate Teukolsky equation, analytic treatment is also important.
- There are many analytic works using some approximations in the literature (e.g. WKB).
- We establish an exact formulation w/o any approximations for wave scattering of spin-s waves from Kerr-Newman-de Sitter BH.

• Teukolsky

$$\left[\Delta^{-s} \frac{d}{dr} \Delta^{s+1} \frac{d}{dr} + \frac{J^2 - isJ\Delta'}{\Delta} + 2isJ' - \frac{2}{3}\Lambda r^2(s+1)(2s+1) + 2s(1-\alpha) - \lambda\right]R_s = 0$$

• Schrödinger

$$\left(\frac{d^2}{dr_*^2} + V_s\right) \mathcal{Y}_s = 0$$

• Heun

$$y'' + \left(\frac{\gamma}{z} + \frac{\delta}{z-1} + \frac{\epsilon}{z-a}\right)y' + \frac{\alpha\beta z - q}{z(z-1)(z-a)}y = 0$$

• Teukolsky

$$\left[\Delta^{-s}\frac{d}{dr}\Delta^{s+1}\frac{d}{dr} + \frac{J^2 - isJ\Delta'}{\Delta} + 2isJ' - \frac{2}{3}\Lambda r^2(s+1)(2s+1) + 2s(1-\alpha) - \lambda\right]R_s = 0$$

• Heun $y'' + \left(\frac{\gamma}{\gamma} + \frac{\delta}{2-1} + \frac{\epsilon}{2-1}\right)y'$ Saul Teukolsky (1947–)

• Teukolsky $\left[\Delta^{-3} - \Delta^{3+1} - \Delta^{-1} + \frac{J^2 - LsJ\Delta'}{\Lambda} + 2\right]$ Erwin Schrödinger (1887–1961)

• Schrödinger

$$\left(\frac{d^2}{dr_*^2} + V_s\right) \mathcal{Y}_s = 0$$

Kahl Heun (1859–1929)

• Heun $y'' + \left(\frac{\gamma}{z} + \frac{\delta}{z-1} + \frac{\epsilon}{z-a}\right)y' + \frac{\alpha\beta z - q}{z(z-1)(z-a)}y = 0$

Pronunciation of "Heun" follows German rule – it's just like 'coin' or 'join'.

Contents:

- 1. $\Gamma(z), \zeta(z)$, integrals
- 2. Elliptic function
- 3. Hypergeometric function
- 4. $P_n(x), H_n(x)$ etc
- 5. $P_{\nu}(z), Q_{\nu}(z), Y_{\ell m}(\theta, \phi)$
- 6. $J_{\nu}(z), N_{\nu}(z), j_n(z), n_n(z)$
- 7. Lame, Mathieu functions

From Sine to Heun: 5 New Functions for Mathematics and Physics in the Wolfram Language

May 6, 2020 - Tigran Ishkhanyan, Algorithms R&D

Mathematica was initially built to be a universal solver of different mathematical tasks for everything from school-level algebraic equations to complicated problems in real scientific projects. During the past 30 years of development, over 250 mathematical functions have been implemented in the system, and in the recent release of Version 12.1 of the Wolfram Language, we've added many more, ranging from the elementary **Sin** function to the advanced Heun functions.

These and a lot of other interesting examples on the properties and applications of the Heun functions are noted in the documentation pages.

Heun Functions in Physics Heun functions have a range of applications in contemporary physics and are powerful enough to generate solutions for a significant set of unsolved problems from quantum mechanics, the theory of black holes, conformal field theory and others. They are being successfully applied in real physical problems at a rapid rate: during the last decade, the number of publications related to the theory of Heun functions tripled in comparison with all other publications until 2010, according to arXiv.

Specifically, the powerful apparatus of the Heun functions allows derivation of new infinite classes of integrable potentials for relativistic and nonrelativistic wave equations used in different problems of quantum control and engineering (please see the recent paper by A. M. Ishkhanyan for different examples).

Heun functions appear in the theory of Kerr–de Sitter black holes and may be used for analysis in more complex geometries (the papers by R. S. Borissov and P. P. Fiziev and H. Suzuki, E. Takasugi and H. Umetsu discuss these problems).

The relationship between the Heun class of equations and Painlevé transcendents leads to new results for the two-dimensional conformal field theory based on the analysis of the solutions of Heun equations (see the papers of B. C. da Cunha and J. P. Cavalcante and F. Atai and E. Langmann).

The aforementioned examples as well as others indicate that the Heun functions are important in and popular for solving absolutely different problems in contemporary physics.

Closing Words At Wolfram, we are in a constant search for fresh ideas and methods that make the Wolfram Language one of the most famous, popular, powerful and user-friendly tools for

References

- Futterman, Handler, Matzner, "Scattering from Black Holes", (Cambridge Univ. Press, 1988)
- Ronveaux, "Heun's Differential Equations", (Oxford Univ. Press, 1995)
- Nakamura, Oohara, Kojima, PTP Supp. 1987
- Suzuki, Takasugi, Umetsu, PTP 1998, 1999, 2000
- Hatsuda, 2006.08957

"STU" in this talk

Contents

- Introduction
- Exact solution
- Scattering problem
- Applications
- Summary

Kerr-Newman-de Sitter spacetime

$$ds^{2} = -\rho^{2} \left(\frac{dr^{2}}{\Delta} + \frac{d\theta}{1 + \alpha \cos^{2}\theta} \right) - \frac{(1 + \alpha \cos^{2}\theta)\sin^{2}\theta}{(1 + \alpha)^{2}\rho^{2}} (adt - \rho^{2}d\varphi)^{2} + \frac{\Delta}{(1 + \alpha)^{2}\rho^{2}} (dt - a\sin^{2}\theta d\varphi)^{2}$$

where

$$\Delta(r) = (r^2 + a^2) \left(1 - \frac{\Lambda r^2}{3} \right) - 2Mr + Q^2, \quad \alpha = \frac{\Lambda a^2}{3}, \quad \rho^2 = r^2 + a^2$$

 $\Delta(r) = 0$ has four roots:

$$\Delta(r) = -\frac{\Lambda}{3}(r - r_{-})(r - r_{+})(r - r'_{-})(r - r'_{+})$$

$$r'_{-} \qquad r_{-} \qquad r_{+} \qquad r'_{+} \qquad r'$$

Teukolsky equation

- We consider a massless test field with spin *s* on KNdS background.
- The Teukolsky equation is then separable and can be transformed into the Heun equation. STU98

(Actually this holds for spin *s* field on general type-D vacuum background with CC.)

Batic, Schmid, gr-qc/0701064

We decompose the master variables in NP formalism as

$$\psi_s = R_s(r)S_s(\theta)e^{-i\omega t + im\varphi}$$

Angular Teukolsky equation

$$\begin{aligned} &\left[\frac{d}{dx}(1+\alpha x^2)(1-x^2)\frac{d}{dx}+\lambda-s(1-\alpha)-2\alpha x^2\right.\\ &+\frac{4sx(1+\alpha)[m\alpha-c(1+\alpha)]}{1+\alpha x^2}-\frac{(1+\alpha)^2[m+sx-(1-x^2)c]^2}{(1+\alpha x^2)(1-x^2)}\right]S_s=0\\ &\text{where } x=\cos\theta,\,c=a\omega. \end{aligned}$$

Solution for SdS or RNdS: spin-weighted spherical harmonics $S_s(\theta)e^{im\varphi} =_s Y_{\ell m}(\theta, \varphi)$ $\lambda = \ell(\ell + 1) - s(s - 1)$

Angular Teukolsky equation

$$\begin{bmatrix} \frac{d}{dx} (1 + \alpha x^2)(1 - x^2) \frac{d}{dx} + \lambda - s(1 - \alpha) - 2\alpha x^2 \\ + \frac{4sx(1 + \alpha)[m\alpha - c(1 + \alpha)]}{1 + \alpha x^2} - \frac{(1 + \alpha)^2[m + sx - (1 - x^2)c]^2}{(1 + \alpha x^2)(1 - x^2)} \end{bmatrix} S_s = 0$$

where $x = \cos \theta$, $c = a\omega$.

 $(1 + \alpha x^2)(1 - x^2) = 0$ has four roots.

- \Rightarrow Four regular singular points: ± 1 , $\pm i/\sqrt{\alpha}$
- $\implies \text{Heun equation} \qquad (\infty \text{ is removable singularity})$

Radial Teukolsky equation

$$\begin{split} & \left[\Delta^{-s}\frac{d}{dr}\Delta^{s+1}\frac{d}{dr} + \frac{J^2 - isJ\Delta'}{\Delta} + 2isJ' \\ & -\frac{2}{3}\Lambda r^2(s+1)(2s+1) + 2s(1-\alpha) - \lambda\right]R_s = 0 \\ & \text{where } J(r) = (1+\alpha)[\omega(r^2+a^2) - am] - eQr. \end{split}$$

 $\Delta(r) = 0$ has four roots.

- \Rightarrow Four regular singular points: $r_{-}, r_{+}, r'_{-}, r'_{+}$
- $\implies \text{Heun equation} \qquad (\infty \text{ is removable singularity})$

• Teukolsky

$$\begin{bmatrix} \Delta^{-s} \frac{d}{dr} \Delta^{s+1} \frac{d}{dr} + \frac{J^2 - isJ\Delta'}{\Delta} + 2isJ' \\ -\frac{2}{3} \Lambda r^2 (s+1)(2s+1) + 2s(1-\alpha) - \lambda \end{bmatrix} R_s = 0$$
• Heun

$$\begin{bmatrix} \frac{d^2}{dr_*^2} + V_s \end{bmatrix} Y_s = 0$$
• Heun

$$y'' + \left(\frac{\gamma}{z} + \frac{\delta}{z-1} + \frac{\epsilon}{z-a}\right) y + \frac{\alpha\beta z - q}{z(z-1)(z-a)} y = 0$$

Hypergeometric equation

$$y'' + \left(\frac{\gamma}{z} + \frac{\delta}{z-1}\right)y' + \frac{\alpha\beta}{z(z-1)}y = 0$$
$$\delta = \alpha + \beta - \gamma + 1$$

- Three regular singular points: $0, 1, \infty$
- Three indep. parameters: α , β , γ
- Hypergeometric function $F(\alpha, \beta, \gamma; z)$

Heun equation

$$y'' + \left(\frac{\gamma}{z} + \frac{\delta}{z-1} + \frac{\epsilon}{z-a}\right)y' + \frac{\alpha\beta z - q}{z(z-1)(z-a)}y = 0$$

$$\epsilon = \alpha + \beta - \gamma - \delta + 1, \quad a \neq 0, 1$$

- Four regular singular points: $0, 1, a, \infty$
- Six indep. parameters a : singularity parameter $\alpha, \beta, \gamma, \delta(, \epsilon)$: exponent parameters q : accessory parameter

Heun equation

$$y'' + \left(\frac{\gamma}{z} + \frac{\delta}{z-1} + \frac{\epsilon}{z-a}\right)y' + \frac{\alpha\beta z - q}{z(z-1)(z-a)}y = 0$$

$$\epsilon = \alpha + \beta - \gamma - \delta + 1, \quad a \neq 0, 1$$

• 4! = 24 transformations
We choose a transformation such that

$$(r'_{-}, r_{-}, r_{+}, r'_{+}) \rightarrow (a, \infty, 0, 1)$$

 r'_{-}
 r'_{-}
 r_{-}
 r_{+}
 r'_{+}
 r'_{+}
 r'_{+}
 r'_{-}
 r'_{-}
 r_{-}
 r_{+}
 r'_{+}
 r'_{+}
 r'_{+}
 r'_{-}
 $r'_{$

Teukolsky \rightarrow Heun

$$\begin{bmatrix} \Delta^{-s} \frac{d}{dr} \Delta^{s+1} \frac{d}{dr} + \frac{J^2 - isJ\Delta'}{\Delta} + 2isJ' \\ -\frac{2}{3}\Lambda r^2(s+1)(2s+1) + 2s(1-\alpha) - \lambda \end{bmatrix} R_s = 0$$

Transformation

$$z = \frac{r'_{+} - r_{-}}{r'_{+} - r_{+}} \frac{r - r_{+}}{r - r_{-}}$$

$$R_{s}(r) = z^{B_{1}}(z - 1)^{B_{2}}(z - z_{r})^{B_{3}}(z - z_{\infty})^{2s+1}y_{s}(z)$$
where $z_{\infty} = z|_{r \to \infty}$, $z_{r} = z|_{r \to r'_{-}}$.
We also define $B(r) = iJ(r)/\Delta'(r)$ and
$$B_{1} = B(r_{+}), B_{2} = B(r'_{+}), B_{3} = B(r'_{-}), B_{4} = B(r_{-}).$$

Teukolsky
$$\rightarrow$$
 Heun
 $y'' + \left(\frac{\gamma}{z} + \frac{\delta}{z-1} + \frac{\epsilon}{z-a}\right)y' + \frac{\alpha\beta z - q}{z(z-1)(z-a)}y = 0$
 $\epsilon = \alpha + \beta - \gamma - \delta + 1, \quad a \neq 0, 1$

with

$$a = z_r, q = -\nu(\lambda, s, \Lambda), \alpha = 2s + 1, \beta = s + 1 - 2B_4,$$

$$\gamma = 2B_1 + s + 1, \delta = 2B_2 + s + 1, \epsilon = 2B_3 + s + 1$$

Note that $a = z_r > 1$.

Heun equation

$$y'' + \left(\frac{\gamma}{z} + \frac{\delta}{z-1} + \frac{\epsilon}{z-a}\right)y' + \frac{\alpha\beta z - q}{z(z-1)(z-a)}y = 0$$

$$\epsilon = \alpha + \beta - \gamma - \delta + 1, \quad a \neq 0, 1$$

Several types of exact solutions

- Local solution or local Heun function Hl Simplest but small region of
- Heun function *Hf*
- Heun polynomial Hp
- Path-multiplicative solutions
- Series of hypergeometric functions

$$y_{\nu}(z) = \sum_{n=-\infty}^{\infty} c_n^{\nu} F(-\nu, \nu + \omega; \gamma; z)$$
Three-term recurrence relation

Wider region of convergence but more involved. STU98,99,00

convergence.

We use this.

Heun equation

$$y'' + \left(\frac{\gamma}{z} + \frac{\delta}{z-1} + \frac{\epsilon}{z-a}\right)y' + \frac{\alpha\beta z - q}{z(z-1)(z-a)}y = 0$$

$$\epsilon = \alpha + \beta - \gamma - \delta + 1, \quad a \neq 0, 1$$

• Local Heun function (Frobenius solution) *Hl* Analytic around a regular singularity.

Hypergeometric function

$$F(\alpha,\beta,\gamma;z) = \sum_{k=0}^{\infty} c_k z^k$$

Recurrence relation

$$c_0 = 1 (k+1)(k+\gamma)c_{k+1} - (k+\alpha)(k+\beta)c_k = 0$$

Solution

$$F(\alpha, \beta, \gamma; z) = 1 + \frac{\alpha\beta}{\gamma 1!} z + \frac{\alpha(\alpha+1)\beta(\beta+1)}{\gamma(\gamma+1)2!} z^2 + \cdots$$
$$= \frac{\Gamma(\gamma)}{\Gamma(\alpha)\Gamma(\beta)} \sum_{k=0}^{\infty} \frac{\Gamma(\alpha+k)\Gamma(\beta+k)}{\Gamma(\gamma+k)} \frac{z^k}{k!}$$

Local Heun function

$$Hl(a,q;\alpha,\beta,\gamma,\delta;z) = \sum_{k=0}^{\infty} c_k z^k$$

Three-term recurrence relation

$$c_{-1} = 0, \ c_0 = 1$$

(k + 1)(k + \gamma)ac_{k+1}
- {k[(k + \gamma + \delta - 1)a + (k + \gamma + \epsilon - 1)] + q}c_k
+ (k + \alpha - 1)(k + \beta - 1)c_{k-1} = 0

No simple expression for general c_k .

- Radius of convergence = min(1, |a|)
- $Hl(1, \alpha\beta; \alpha, \beta, \gamma, \delta; z) = F(\alpha, \beta, \gamma; z)$
- Hl = "HeunG" in Mathematica 12.1 or later.

Local Heun functions at z = 0,1

- Local solutions at z = 0 (BH horizon) $y_{01}(z) = Hl(a,q;\alpha,\beta,\gamma,\delta;z)$ $y_{02}(z) = z^{1-\gamma}Hl(a,q_2;\alpha_2,\beta_2,\gamma_2,\delta_2;z)$
- Local solutions at z = 1 (Cosmological horizon) $y_{11}(z) = Hl(1 - a, \alpha\beta - q; \alpha, \beta, \gamma, \delta; 1 - z)$ $y_{12}(z) = (1 - z)^{1-\delta} Hl(1 - a, q'_2; \alpha'_2, \beta'_2, \gamma'_2, \delta'_2; 1 - z)$ |a| > 1 so there is an overlapping region of the two convergence circles.
- \Rightarrow In this region we can use both local solutions w/o analytic continuation.

Connection coefficients

Relation between the two sets of local solutions

$$y_{01}(z) = C_{11}y_{11}(z) + C_{12}y_{12}(z)$$

$$y_{02}(z) = C_{21}y_{11}(z) + C_{22}y_{12}(z)$$

No useful analytic expressions are known for C_{ij}

but we can obtain them by e.g. \leftrightarrow cf. $C_{22} = \frac{W_z[y_{02}, y_{11}]}{W_z[y_{12}, y_{11}]}$ formula for F

where $W_{z}[u, v] = u \frac{dv}{dz} - \frac{du}{dz}v$ is the Wronskian. Note that $W_{z}[y_{a}, y_{b}] \neq \text{const.}$ but $z^{\gamma}(z-1)^{\delta}(z-a)^{\epsilon}W_{z}[y_{a}, y_{b}] = \text{const.}$

Connection coefficients

Similarly,

$$y_{11}(z) = D_{11}y_{01}(z) + D_{12}y_{02}(z)$$

$$y_{12}(z) = D_{21}y_{01}(z) + D_{22}y_{02}(z)$$

where

$$\begin{pmatrix} D_{11} & D_{12} \\ D_{21} & D_{22} \end{pmatrix} = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix}^{-1} \\ = \frac{W_z[y_{11}, y_{12}]}{W_z[y_{01}, y_{02}]} \begin{pmatrix} C_{22} & C_{12} \\ -C_{21} & C_{11} \end{pmatrix}$$

Angular part

- ✓ Similarly, we can also transform the angular Teukolsky equation into the Heun form.
- ✓ Requirement of the regularity at $\theta = 0$ and π determines the eigenvalue λ :

$$W_{Z}[y_{a,0I}, y_{a,1J}] = 0$$

with $I = \begin{cases} 1 \ (m - s \ge 0) \\ 2 \ (m - s < 0) \end{cases}$ and $J = \begin{cases} 1 \ (m + s \le 0) \\ 2 \ (m + s > 0) \end{cases}$.

• Teukolsky

$$\begin{bmatrix} \Delta^{-s} \frac{d}{dr} \Delta^{s+1} \frac{d}{dr} + \frac{J^2 - isJ\Delta'}{\Delta} + 2isJ' \\ -\frac{2}{3} \Lambda r^2 (s+1)(2s+1) + 2s(1-\alpha) - \lambda \end{bmatrix} R_s = 0$$
• Heun

$$\begin{bmatrix} \frac{d^2}{dr_*^2} + V_s \end{bmatrix} Y_s = 0$$
• Heun

$$y'' + \left(\frac{\gamma}{z} + \frac{\delta}{z-1} + \frac{\epsilon}{z-a}\right) y + \frac{\alpha\beta z - q}{z(z-1)(z-a)} y = 0$$

Contents

- Introduction
- Exact solution
- Scattering problem
- Applications
- Summary

Schrödinger equation

$$\left(\frac{d^2}{dr_*^2} + V_s\right)\mathcal{Y}_s = 0$$

where
$$dr_* = \rho^2 dr / \Delta$$
, $\mathcal{Y}_s = \Delta^{s/2} \rho R_s$ and
 $V_s(r) = \frac{{\Delta'}^2}{\rho^4} \left(B + \frac{s}{2}\right)^2 + \frac{\Delta}{\rho^4} [\dots]$

Pure imaginary

s², is

- $\Longrightarrow V_{S}(r) = V_{-S}^{*}(r)$
- \Rightarrow \mathcal{Y}_s and \mathcal{Y}_{-s}^* are solutions
- \Rightarrow R_s and $\Delta^{-s}R^*_{-s}$ are solutions

Schrödinger equation

$$\left(\frac{d^2}{dr_*^2} + V_s\right)\mathcal{Y}_s = 0$$

For $r \to r_+$ or r'_+ $V_s(r) \to \frac{{\Delta'}^2}{\rho^4} \left(B + \frac{s}{2}\right)^2 + \frac{\Delta}{\rho^4} \left[\dots\right]$ $= \frac{{\Delta'}^2}{\rho^4} \left(B + \frac{s}{2}\right)^2$

Schrödinger equation

$$\left(\frac{d^2}{dr_*^2} + V_s\right)\mathcal{Y}_s = 0$$

For $r \to r_+$ or r'_+ $\mathcal{Y}_s \to \exp\left[\pm \frac{\Delta'}{\rho^2} \left(B + \frac{s}{2}\right) r_*\right]$

and hence

$$R_s \rightarrow \Delta^B$$
 and Δ^{-B-s} ($e^{i\omega r_*}$ and $\Delta^{-s}e^{-i\omega r_*}$)

The asymptotic behavior of general solution is thus a linear combination of $e^{i\omega r_*}$ and $e^{-i\omega r_*}$.

 $\times e^{-i\omega t}$ Outgoing Ingoing

out

Chrzanpwski, Misner (1974)

Asymptotic behavior of exact solution

Let's identify $R_{in,s}$ and $R_{up,s}$ in terms of the exact solution.

- Local solutions at z = 0 (BH horizon) $y_{01}(z) = 1 + O(z)$ $y_{02}(z) = z^{-2B_2-s}[1+O(z)]$
- Local solutions at z = 1 (Cosmological horizon) $y_{11}(z) = 1 + O(1 - z)$ $y_{12}(z) = (1 - z)^{-2B_3 - s}[1 + O(1 - z)]$

Asymptotic behavior of exact solution

After some calculations we see that

$$R_{\text{in},s} = \begin{cases} R_{02,s}, & (r \to r_{+}) \\ C_{21}R_{11,s} + C_{22}R_{12,s}, & (r \to r'_{+}) \end{cases}$$
$$R_{\text{up},s} = \begin{cases} D_{11}R_{01,s} + D_{12}R_{02,s}, & (r \to r_{+}) \\ R_{11,s}, & (r \to r'_{+}) \end{cases}$$

Each of two expressions equal exactly.

We can then obtain $C_s^{(inc)}$ etc in terms of $C_{22,s}$ etc. e.g. $C_s^{(inc)} \propto C_{22,s}$ \Rightarrow We can calculate $C_s^{(inc)}$ etc exactly.

Contents

- Introduction
- Exact solution
- Scattering problem
- Applications
- Summary

Quasinormal mode

We can derive QNM frequency by Hatsuda, 2006.08957 $W_{z}[y_{a,0I}, y_{a,1J}] = 0$ and $C_{22} = 0$

Pros:

Simple and fast (a few sec).

No approximation.

Easy to increase the accuracy.

Cons:

Requires an initial value $(\omega_{ini}, \lambda_{ini})$ close to the correct ones.

cf. - Leaver's continued fraction method: Similar but it includes infinite series, which one needs to truncate and check the convergence (while the conv. is fast).

- Numerical calculation: More processes which make it difficult to control the accuracy.

Reflection / transmission rate

We obtained a simple exact formula

$$\mathcal{R}_{s} = 1 - \mathcal{T}_{s}$$
$$\mathcal{T}_{s} = F_{s} \left(\frac{Z_{\infty}}{Z_{\infty} - 1}\right)^{2} \frac{1}{C_{22,s}C_{22,-s}^{*}}$$

with
$$F_s = \frac{\Delta'(r_+)(2B_1+s)}{\Delta'(r'_+)(2B_2+s)}$$

Pros:

Simple and fast.

No approximation.

Easy to increase the accuracy.

cf. - STU00 formula: Similar but it includes infinite series.

Numerical calculation:
More processes (solve tortoise coord., fit, impose boundary condition with shooting method), difficult to control the accuracy.

Reflection rate Schwarzschild-de Sitter $\Lambda M^2 = 10^{-3}$ $s = 0, \omega M = 1, 1.5, 2$

Our exact formula (~10sec, WorkingPrecision → 20)
 Numerical calculation (~1s, MachinePrecision)

Superradiance Kerr-de Sitter $\Lambda M^2 = 10^{-3}, a/M = 0.9$ $s = 0, \ell = m = 2$

Green function

We constructed the Green function

$$G(\mathbf{x}, \mathbf{x}_{s}) = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \frac{-\Delta^{s}(r_{s}) \left[R_{\text{in},s}(r_{s}) R_{\text{up},s}(r_{s}) \Theta(r - r_{s}) + (r \leftrightarrow r_{s}) \right]}{\Delta^{s+1} W_{r} \left[R_{\text{in},s}, R_{\text{up},s} \right]} \times_{s} Y_{\ell \text{m}}(\theta, \varphi)_{s} Y_{\ell \text{m}}^{*}(\theta_{s}, \varphi_{s})$$

Pros:

No approximation such as

- $r, r_{\rm s} \gg 1$
- $\vartheta, \varphi \ll 1$
- $\omega M \gg 1 \text{ or } \omega M \ll 1$

cf. Nambu, Noda, 1502.05468 Nambu, Noda, Sakai, 1905.01793

Slightly off forward scattering s = 0, $(r, \vartheta, \varphi) = (20M, 0, \pi/10)$ $(r_s, \vartheta_s, \varphi_s) = (6M, 0, \pi)$

Angular dependence

Contents

- Introduction
- Exact solution
- Scattering problem
- Applications
- Summary

Summary

- We have established the exact formulation of the scattering problem of spin-s massless field on KNdS background by using the exact solution in terms of local Heun function *Hl*.
- Simple and fast formulae w/o any approximations.
- Applications include:
 - QNM
 - Reflection / absorption rates
 - Green function
 - S-matrix, cross section, BH image, ...and more!