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Off-nuclear, compact, X-ray sources of which X-ray

luminosity exceeds the Eddington luminosity for

the stellar mass black holes, ~ 10%° erg s7'.

It has been thought to be either

- stellar mass black hole + Supercritical accretion

(King+2001, Watarai+2001, - - )

or

- Intermediate-mass black hole + Sub-Eddington accretion
(Colbert & Mushotzky 1999, Makishima+2000, - - )

However, it has not been settled yet . ..



Ultra-Luminous X-ray Pulsar (ULX Pulsar)

The central objects of some ULXs turned out to be neutron stars (NSs)
since recent X-ray observations detected the pulsed emission.
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- The mass of an NS is (1.4 - 3)M,,, and therefore the matter should

accrete at the supercritical rate where the mass accretion rate exceeds
the critical mass accretion rate, My, ~ 10" g s71.

" There are still debates on the magnetic field strength in ULX Pulsars,
from 10!° G (see e.g., King + 2017) to 10" G (see e.g., Mushtukov+2015).



Numerical Simulations around magnetized NSs
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Numerical Simulations around magnetized NSs
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However, the dependence of magnetospheric
B structures and outflows on the mass accretion §
g rate and magnetic field strength of the NS is still

Gunknown.

{We perform General Relativistic Radiation-MHD
1(GR-RMHD) simulations of supercritical accretion
Iflows onto the magnetized neutron stars, and
Investigate the magnetospheric structure and

outflows. y
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- Boyer-Lindquist Metric « Mass and radius of the NS are 1.4 M, and 10km, respectively

* The NS has the magnetic dipole filed < spin parameter is set to be zero.
« The magnetic axis coincides with the rotation axis (Axisymmetric structure).



The dependence of magnetospheric radius on the mass accretion

rate and the magnetic field strength of NSs
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the accretion disk is truncated by dipole
magnetic field of NS.

Magnetosphere of the NS becomes large
(small) in the case of small (large) accretion
rate and strong (weak) magnetic field.
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The dependence of magnetospheric radius on the mass accretion

rate and the magnetic field strength of NSs (Enlarged View)
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Our results shows that the magnetospheric
i radius, which Is consistent with the analytic
solution.
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The dependence of outflows on magnetospheric structures

These figure show the time averaged mass flux of each models at r = 2000 km.

The blue frame shows the region The red frame shows the region
where the velocity of gases exceeds where the mass flux is larger than 10%
the escape velocity of maximum value (Outflow region).
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The side where the accretion column is formed :
The peak of outflow, 6,.,., Is near the rotation axis.

Offset angle between rotation axis and 6., Is about 15",

The side where the accretion column is not formed (model B and C) :
Outflow extends to the relatively wide angle away from the rotation axis.
Offset angle between rotation axis and @_.., is >30°".

peak
We define the region surrounded by the red frame as outflow region.



The origin of outflows depends on magnetospheric structures

The lines indicate the streamlines of the outflow regions. The color of the lines means
the specific angular momentum of the outflowing matter.
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Model A (small magnetosphere)

The outflow with larger angular momentum is originated from the disk (see red lines) and
the matter comes from the accretion columns has smaller angular momentum (blue lines).
Model C (large magnetosphere)

Most of the outflowing matter has small angular momentum and is launched near the
accretion column.



The dependence of components of outflows on magnetospheric

structures The red frame shows
the Outflow reg_;ion.

Angular momentum profiles of outflows at r = 2000km.
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Green line shows the Keplerian angular momentum at the magnetospheric radius.

. In the model A, outflows in 40°< 6 <65 and 95°< 8 < 150" may be disk origin since the
angular momentum is larger than Keplerian angular momentum at the magnetospheric
radius.

.- In the model B and C (Large magnetosphere case), the angular momentum of the gas is
small, and therefore most of the components of outflows may come from inside the

magnetosphere, probably accretion column (see previous slide).
R, ~21x10°cm, 1, ~7x10™%s



What are outflows driven by ?

We compared the radiation force f,,; and . Jra dOminant
gravitational force f,,,. - . .
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of gas are comparable to escape velocity.

- In the magenta region, the radiation force becomes larger than
the gravitational force.
- Qutflow may be mainly driven by radiation force.



We performed General-Relativistic Radiation MHD simulation of
supercritical accretion flows onto the magnetized neutron stars.

The resulting magnetospheric radius roughly depends on the mass

accretion rate and the strength of the magnetic fields as ( « M~/"B*’),
which is consistent with the analytic solution.

The structure of the outflow and accretion column depend on the
magnhetospheric radius.

small magnetosphere case

. Accretion columns form at both the north and south poles.

. Outflowing matter comes from both the disk and the accretion columns.
Large magnetosphere case

. Accretion column forms at either the north or south poles.

. Matter of the outflows is launched at the accretion column.

Outflow is probably driven by radiation force.
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Outflow temperature
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Resulting gas temperatures are consistent
with observed outflow temperature



Outflow velocity
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