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Abstract

By using Boltzmann-radiation-hydrodynamics code, we are running the core-collapse
simulations of the progenitor with 2 & 4 rad/s rotations. Shock dynamics is under
Investigation and unique data to analyze the collective neutrino oscillation is providead.

1. Introduction

Core-collapse supernovae are explosive deaths of massive
stars. Neutrino heating is promising candidate of the energy progenitor
source. We developed 6D Boltzmann equation solver for
neutrino transport to demonstrate this scenario.
Harada et al. (2019) proved that the slow rotation (1 rad/s at
center) of the progenitor hardly affects the shock revival.
Nagakura et al. (in prep) showed that the extreamely fast
rotation (6 rad/s) helps the shock revival. Here, influences of
the rapid (2 and 4 rad/s at center) rotation is investigated.

2. Method
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3. Results
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Shock radius for the 4 rad/s model is larger than that for the 2 rad/s model, though whether the shock revival succeed or
not Is yet to be determined. The shock radii and shock shape Is clearly affected by the centrifugal force.

Gain radius (inner boundary of the neutrino heating region) is larger for the 4 rad/s model, implying that the heating rate is
smaller. Indeed, the neutrino luminosity is lower for the 4 rad/s model. This i1s because the surface temperature of the proto-
neutron star (PNS) is low owing to the slow contraction by the centrifugal force.

Whether the rotational model explodes or not depends on the competence between the extension of the shock and the slow
contraction of the PNS.
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4. Summary

3y using the Boltzmann-radiation-hydrodynamics code, we are running two rapidly rotationg stellar core collapse simulations.
Whether the shock revives or not is still uncertain, but the faster rotation model shows more extended shock. Furthermore,
our Boltzmann solver provides unique data to investigate the collective neutrino oscillation.




