

General relativistic radiation magnetohydrodynamics simulations of super-critical accretion disks around Kerr black holes

Aoto Utsumi¹⁾, Ken Ohsuga¹⁾, Hiroyuki R. Takahashi²⁾,Yuta Asahina¹⁾ 1)Univ. of Tsukuba 2) Komazawa University E-mail : utsumi@ccs.tsukuba.ac.jp

Introduction

Super-critical accretion disks are thought to be the engine of the very luminous, compact objects, e.g., ultra luminous X-ray sources, narrow-line Seyfert galaxies, tidal disruption events, and so on. However, the dependence of the outflow on the black hole spin parameter (a^*) is not well understood. We perform 2.5-dimensional general relativistic radiation magnetohydrodynamics (GRRMHD) simulations to investigate the dependence of luminosity and jet power on the spin parameter in super-critical accretion disks.

	Basic ea. & Methods		2.5D GRRMHD simulations (Takahashi et al. 2016)	
		Nata	Models.	$\log(E_{\rm rad}/\rho_0 c^2) \log(\rho/\rho_0)$
•	Mass conservation $(\alpha u^{\gamma}) = 0$	<i>c</i> : Light speed ($c = 1$)	Axis symmetric.	
•	The energy-momentum conservation for magnetofluids $T^{\gamma} = C$	ρ : Mass density u^{μ} : Four velocity	• Calculation box size : $r = [0.96r_{\rm H}, 245]r_{\rm g}, \theta = [0, \pi]$ ($r_{\rm H}$:Event horizon , $r_{\rm g}$: Gravitational radius).	

• The energy-momentum tensor for radiation field

 $R^{\nu}_{\mu}{}_{;\nu} = -G_{\mu}$

Induction equation

 \bullet

 $\partial_t \left(\sqrt{-g} B^i \right) = \left[\sqrt{-g} \left(B^i v^j - B^j v^i \right) \right]$ The energy momentum tensor for magnetofluids

- $T^{\mu\nu} = (\rho + e + p_g + 2p_m)u^{\mu}u^{\nu} + (p_g + p_m)g^{\mu\nu} b^{\mu}b^{\nu}$ The energy momentum tensor for radiation $R^{\mu\nu} = p_{rad}(4u^{\mu}_{rad}u^{\nu}_{rad} + g^{\mu\nu})$
- The radiation equation is based on a moment formalism with applying a **M-1 closure**.
- G^{μ} : Radiation four force g : Determinant of $g_{\mu\nu}$ (Kerr-schild metric) B^{i} : Magnetic field ν^{i} : Three velocity e : Internal energy p_{g} : Gas pressure p_{m} : Magnetic pressure b^{μ} : Magnetic four vector
- p_{rad} : Radiation pressure
- $u_{\rm rad}^{\mu}$: Radiation four velocity
- Grid points : $(N_r, N_\theta, N_\phi) = (264, 264, 1)$
- BH mass : $M = 10 M_{\odot}$
- BH spin : $-0.7 < a^* < 0.7$ (9 parameters)
- Electron-scattering(comptonization)
- + Free-free absorption

Initial condition

- Set the rotational equilibrium torus.
- Maximum density of initial torus. $\rho_0 = 1.4 \times 10^{-2} [\text{g cm}^{-3}]$
- Weak poloidal magnetic fields. Plasma beta : $\beta = 100$

Fig.1 Quasi-steady structure of accretion disks and outflows. Color shows radiation Energy density (left),mass density(right). Vectors show stream-lines, and gray curves show magnetic field lines.

Results of spin parameter dependence.

1. Mass inflow rate \dot{M}_{in} . (Fig.2,3) $\dot{M}_{in}(a^* = 0.7) < \dot{M}_{in}(a^* = 0) < \dot{M}_{in}(a^* = -0.7)$

The mass inflow rate is three times higher for case $a^* = -0.7$ than for case $a^* = 0.7$. 2. Luminosity in the jet region. (Fig. 4) The Luminosity of the Jet region increases as $|a^*|$ increases.

- The total luminosity is much larger than the luminosity by the Blandford-Znajek (BZ) mechanism. Therefore, the main energy source is the disk.
- As |a^{*}| increases, total luminosity and BZ luminosity are increasing.
 The BZ mechanism contributes to the |a^{*}| dependence of total

⇒
It is caused by the difference of the accretion velocity.

Fig.2 BH spin dependence of Mass inflow rate(top), accretion velocity(middle) and mass density(bottom).

Consideration

In the region inside the inner most stable orbit radius (ISCO), the gas accretion velocity increases as the gas approaches the Event Horizon. $\downarrow \downarrow \downarrow \downarrow$

Since the ISCO radius decreases as a^* increases, the accretion velocity decreases as a^* increases.

This suggests that the

retrograde BHs.

growth of BHs is faster in

luminosity.

• The radiation luminosity, which is larger than the luminosity via the poynting flux, is ~20,10 and $15L_{Edd}$ for $a^* = 0.7,0$ and -0.7.

Fluxes Radiative flux

$$R_t^{\ i} = 4p_{rad} u_{t \ rad} u_{rad}^{i}$$
Poynting flux
$$M_t^{\ i} = b^2 u_t u^i - b_t b^i$$

BZ poynting flux $F_{\text{BZ}}\Big|_{r_{\text{H}}} = 2(B^{r})^{2}\omega r_{\text{H}}(\Omega_{\text{H}} - \omega) \sin^{2}\theta$ ω : Angular velocity of magnetic field.

 $\Omega_{\rm H} = (\frac{a^*}{2r_{\rm H}})$: Angular velocity of BH spin.

Fig.3 Radial distribution of accretion velocity. Marker shows ISCO radius. (The curve ends at EH.)

Conclusions

- The mass inflow rate is larger for retrograde BH. The main cause is the accretion velocity induced by the difference in ISCO.
- The main energy source for the jet is the disk, but the BZ mechanism contributes to the $|a^*|$ dependence.
- Radiation Luminosity is maximum in jet region.