X-ray Studies of Supermassive Black Holes and Jetted AGNs with XRISM

2021 January 20 Osaka University, Japan Hirofumi Noda

Outline of This Talk

- 1. X-ray Microcalorimeter onboard X-ray satellite
- 2. Studies of Differences b/w Radio-Loud and Radio-Quiet AGNs
 - I. Nuclear Structures and Disk Winds (*Hitomi* results & *XRISM* prospects)
 - II. X-ray Measurements of Supermassive Black Hole Spins (*XRISM* prospects)
- 3. Supermassive Black Hole Accretion State Transition

1. X-ray Microcalorimeter onboard X-ray Satellite

1. Hitomi X-ray Microcalorimeter Spectroscopy

Hitomi collaboration (2016, 2018), Credit: JAXA/Ken Crawford (Rancho Del Sol Observatory)

2. X-ray Microcarorimeter onboard Hitomi

- ☆ X-ray microcalorimeter on the 6th Japanese X-ray satellite *Hitomi* observed Perseus (*Hitomi* co. 16, 18).
- ☆ However, *Hitomi* was lost ~1 month after the launch because of attitude control troubles.

3. XRISM (2022 JFY~)

The Science Council of Japan Master Plan symposium, Tashiro-san presentation

- ☆ Development of the recovery mission of *Hitomi* "X-Ray Imaging and Spectroscopy Mission (XRISM)" is ongoing.
- ☆ The launch is planned in 2022 JFY. We are now performing FM tests. BH Astrophysics with VLBI

3. XRISM (2022 JFY~)

		JAXA	NASS		
		宇宙航空研究開発機構	米国航空宇宙局		
eesa	10010900100000000000000000000000000000	A DE LE G	✦ 大阪大学 OSAKA UNIVERSITY	宮崎大学 University of Miyuzaki	Salara University 埼玉大学
欧州宇宙機関	首都大学東京	金沢大学	大阪大学	宮崎大学	埼玉大学
		UN trute for Space Research	IVERSITÉ GENEVE Int DIS JEINNESS Kantered d'astronomik	ASC	
	SRON(Nei Institute Rese	therlands University for Space arch)	r of Geneva Canadia Age	in Space incy	
GRAPPA *	Canadian Light Sovree servicitation	THE UNIVERSITY OF CHICAGO	CHUO UNIVERSITY	Durham	で 愛媛大学 EHIME UNIVERSITY
Gravitation AstroParticle Physics Amsterdam	Canadian Light Source Inc.	University of Chicago	中央大学	University of Durham	愛媛大学
+≞S+ © +	🤩 藤田医科大学	CENTER FOR ASTROPHYSICS HARVARD & SMITHSONIAN	醈 広 島 大 学	👾 関東学院大学	* 近畿大学
European Sauther Observatory	藤田医科大学	Harvard-Smithsonian Center for Astrophysics	広島大学	関東学院大学	近畿大学
以 因西学院大学 KNANGEGARINUMMERSTY	京都大学 KNOTO UNIVERSITY	Lawrence Livermore National Laboratory	Universiteit Leiden Sterrewacht Leiden	S UNIVERSITY OF MARYLAND	Massachusetts Institute of Technology
関西学院大学	京都大学	Lawrence Livermore National Laboratory	Leiden University	University of Maryland	Massachusetts Institute of Technology
UNIVERSITY OF MICHIGAN	他们的 NAGOYA UNIVERSITY	奈良教育大学 Nava University of Education	和文学版人 奈良女子大学 Nara Women's University	1 日本福祉大学	
University of Michigan	名古屋大学	奈良教育大学	奈良女子大学	日本福祉大学	理化学研究所
🞯 立教大学	Cone University: One World, Yours.	() () () () () () () () () ()	一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	交 東北学院大学 TCHORU CARLIN UNIVERSITY	東京大学 natlwasarvorToxio
立教大学	Saint Mary's University	芝浦工業大学	静岡大学	東北学院大学	東京大学
No.		PAGALATY OF	Y OF WATERLOO SOERCE Physics & Astronomy	consin Ya	le
東京	原理科大学 早稲田	日大学 University	of Waterloo Univer Wisco	rsity of Yale Uni onsin	iversity

https://xrism.isas.jaxa.jp

2. Studies of Differences between Radio-Loud and Radio-Quiet AGNs (*Hitomi* results & *XRISM* prospects)

4. Picked-up Topics with X-ray Precise Spectroscopy

- ☆ In the AGN unified model, radio-loud and radio-quiet AGNs are believed to have an identical AGN structure. However, not conclusive yet.
- ☆ AGN radio-loudness (the bimodality of the optical-radio plane) is suggested to reflect BH spins. However, it has been difficult to constrain BH spins.

5. Probe to Study Nuclear Structure: Fe-Kα Line

rightarrow Profile of narrow & neutral Fe-K α line

- Accretion disk? Broad-line region (BLR)? \rightarrow <u>V width > 2000 km/s (FWHM)</u>
- Torus? Circumnuclear disk (CND)? Outer? → <u>V width < 100s km/s (FWHM)</u>
- \bigstar The *E* res. of X-ray CCDs cannot distinguish the difference. X-ray calorimeter can!
- ☆ The origin (line profile) of Fe-Ka reflects nuclear structures

6. *Hitomi* Detection of Fe-Kα from NGC 1275

☆ NGC 1275 is the first AGN, observed with X-ray Calorimeter $\Delta E/E = 5 \text{ eV}/6 \text{ keV}$

	L/L _{Edd}	V width (km/s)	EW (eV)
NGC 1275	~ 10-3-4	500–1600 (< 2750 BLR)	~20
Seyferts	$\sim 10^{-1-2}$	> 2500 (~ <i>V</i> of BLR)	~150

☆ <u>The Fe-Kα line presumably comes from CND in NGC 1275.</u> A BLR is absent, a torus has low covering fraction (otherwise, Fe-Kα must be broad and strong).

7. Is the Strange Torus Structure Related to Jet Activity?

- ☆ NGC 1275 has $L/L_{Edd} \sim 10^{-3-4}$ and strong jet activity. Its L/L_{Edd} may correspond to normal covering fraction of torus (Ricci+17).
- ☆ Is the strange BLR & torus structure in NGC 1275 (*Hitomi* co. 18) related to the jet activity, low L/L_{Edd} , or both?
- Systematic study of narrow Fe-Kα lines from RGs & LLAGNs with XRISM
 + ALMA imaging of cold matter accretion within tens pc (Nagai-san's talk!)

Disk Winds (XRISM prospects)

8. Disk Wind Detected with XRISM

PG1211+143 XMM observation and XRISM Simulation (Mizumoto+20)

- ☆ Ab. features by warm absorbers, disk wind and ultrafast outflow (UFO; Nomura-san's talk!) can be significantly detected.
- Absorption lines with different ionization degree and velocities can be identified. $N_{\rm H}$, ξ , and ν/c of winds can be constrained.

9. Relation between Jet and Disk Wind

- A Mehdipour & Costantini 19 reported an inverse correlation b/w radio-loudness and $N_{\rm H}$ of disk wind in X-ray bright RGs.
 - ➔ Is a disk wind driven magnetically? So, does a disk wind declines when a jet gets stronger?
- ☆ Systematic study of disk wind abs. lines in RGs with XRISM is necessary to verify the wind-jet bimodality.

SMBH Spin Measurement (XRISM prospects)

10. Relativistically-Blurred Fe-Kα Line in X-ray

11. Problems of the Previous X-ray Spin Measurements

☆ In a few tens AGNs, BH spins were measured. <u>Many have $a^* \sim 1$ (e.g., Reynolds19)</u>

Also reproduced by models with $a^* = 0$, mainly because of the following two.

① Depends on continuum assumption (Red wing is ~5% of continuum)

- ➔ Broad band coverage (and variability) by XRISM + other X-ray satellites
- ② Affected by fine spectral structures such as neutral and ionized Fe lines
- ➔ High energy resolution (~30 times higher than previous detectors) of XRISM

12. MCG-6-30-15 BH Spin Measurement with XRISM

- \Rightarrow Ionized abs. lines can be quantified with *XRISM*. Continuum can be determined.
- ☆ From the Fe-Kα profile after subtraction of the continuum and fine spectral features, we can constrain *a*^{*} if Fe-Kα is really broad.
- ☆ Even opposite models with $a^* = 0$ and ~1 cannot be distinguished by previous X-ray spectra. *XRISM* will make progress in understandings of BH spin (a^*)!

13. Synergy with the EHT

- ☆ With the EHT, BH spins of M87 (and RLAGNs) can be constrained via images and time variability of vicinity to BHs (Kawashima-san's talk!).
- ☆ X-ray measurements require highly accreting sources, so X-ray targets should be complementary to EHT targets.
- ☆ Some radio galaxies and radio-loud NLSy1s can be common targets of the EHT and XRISM, e.g., 3C120, 3C111, 1H0323-232, NGC 1275

4. SMBH Accretion State Transition

14. X-ray Spectrum and State Transition of BH Binary

- ☆ Include disc black body and inverse Compton with high *E* cutoff at several hundreds keV (e.g., Yamada, HN+13)
- ☆ With mass accretion rate, spectral state changes. Disc evaporates into corona, or corona condenses to disc, changing inner radius (e.g., Done+07)

15. Accretion State Transition and Jet Activity

16. Changing-Look AGN

☆ Some AGNs change their types defined by broad emission lines in ~10 years (type 1 → 1.9 or 1.9 → 1) → "Changing-Look AGNs (CLAGNs)"

☆ Optical surveys discovered hundreds CLAGNs (Macleod+16, 19, Yang+18)

→ What happens in accretion flow?

 \cancel{k} In this study, we focused on CLAGN spectral change in optical, UV, and X-ray

BH Astrophysics with VLBI

17. Optical/UV/X-ray Spectral Change (HN & Done 18) Swift/UVOT & XRT de-absorbed spectra 2013 Type 1-1.9 $(L/L_{\rm Edd} \sim 0.01)$ 0.01 (Photons cm⁻² s⁻¹ keV⁻¹) **S**0 galaxy 0-3 14. 15.0 MUSE r band $u \mathsf{band}$ MIR band WISE W1[+2.8mag] Stripe82 Stripe82 SWIFT 8 WISE W2[+2.8mag] PTF 0-3 0.01 0.1 100 10 18.5 1000 1 Liverpool 👌 Liverpool Energy (keV) 19.0 2013 2015 2001 2011 2003 200' 2009 Observing time

17. Optical/UV/X-ray Spectral Change (HN & Done 18)

Swift/UVOT & XRT de-absorbed spectra

18. DiscBB + Soft excess + Hard Compton Model *XMM-Newton/*OM & EPIC-PN de-absorbed spectra (HN & Done 18)

18. DiscBB + Soft excess + Hard Compton Model *Swift*/UVOT & XRT de-absorbed spectra (HN & Done 18)

18. DiscBB + Soft excess + Hard Compton Model *Swift/UVOT & XRT de-absorbed spectra* (HN & Done 18)

- ☆ SED change of CLAGN closely resembles that of BHB state transition
 → State transition in SMBH accretion! (also see Igarashi-san's talk)
- ☆ Soft excess emission which contains most of UV photons powering BLR drastically changes its flux in the state transition
 - → The state transition causes changing-look phenomenon

20. AGN State Transition & Predicted Jet Activity

- ☆ State Transition from type 1.9 to 1 corresponds to that from the low/hard to high/soft state in BHBs in which the $\Gamma > 2$ jet ejections are observed!
- ☆ The BLR and torus geometry can vary, changing the narrow Fe-K α profile!
- ☆ Why don't we propose and trigger ToO obs. of such turn-on (type 1.9 to 1) CLAGNs by VLBIs and XRISM? (Mrk 590, NGC 3516, NGC 4151, ...)

21. CLAGNs in Time-Domain MWL Astronomy Era

22. Summary

- ☆ The next X-ray satellite *XRISM* will be launched in 2022 JFY. The X-ray microcalorimeter achieves the high *E* resolution of $\Delta E/E = 5$ eV/6 keV.
- ☆ With the precise X-ray spectroscopy by *XRISM*, we can constrain e.g., AGN structures, UFO features, and SMBH spins in radio-loud sources, and compare them with radio-quiet sources.
- ☆ CLAGNs, which change their AGN types in months-years, are probably caused by state transitions of SMBH accretion flows like the high/soft-low/hard transition in Galactic BHBs.
- ☆ CLAGNs are key to understand the jet activity change following mass accretion state change, and ToO observations of CLAGNs with VLBIs and *XRISM* may provide their evidences.

Thank you very much for your attentions!