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Astrophysical Neutrinos

• IceCube has been detecting astrophysical νs (TeV-PeV)
• Isotropic arrival distribution → Extragalactic origin
• Soft spectrum by the cascade analysis 
→ Medium energy (~10 TeV) excess ?

• Flat spectrum by the track analysis→two component ?
• Origin has yet to be determined
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Measurement of the Diffuse Astrophysical Muon Neutrino Flux with IceCube C. Haack

Figure 4 Measured astrophysical flux. Left: Unfolded neutrino energy spectrum in comparison
to the best-fit fluxes. Right: Uncertainty range of the observed astro-physical per-flavor flux in
comparison with the best fit atmospheric background and the results from the starting event analysis
[6].

test for a spectral cutoff implemented as exponential factor in the flux model:
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The cutoff energy Ecut is found to be strongly degenerate with a softer spectral index g , and both
parameters cannot be fitted concurrently. Therefore, the test is performed for two distinct assump-
tions of the astrophysical flux parameters: (A) The best fit hypothesis with gastro = 2.19 and (B) a
benchmark model with gastro = 2.0. All other parameters are free in the fit.

Figure 5 Likelihood scan for the hypothesis test of a spectral cut-off. Left gastro = 2.0. Right:
gastro = 2.19

The results of both fits are shown in figure 5 as 2D profile likelihood scans in Ecut and Fastro.
For our best-fit spectrum (A) a cut-off is not significant. However, for an index harder than preferred
by our measurement a cut-off would be required. For the benchmark hypothesis (B) of a hard
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5Neutrino Production Process
• pp inelastic collision

• Photomeson production (pγ)
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IV. PRODUCTION OF
ELECTRON-POSITRON PAIRS

At energies below the photomeson production, the main
channel of inelastic interactions for protons with ambient
photons proceeds through the direct production of
electron-positron pairs. In the rest frame of the proton,
this process is described by the so-called Bethe-Heitler
cross section. In astrophysical environments, the process

is more often realized when ultrarelativistic protons collide
with low energy photons,

pþ ! ! eþ þ e" þ p: (44)

The process is energetically allowed when

!p">mec
2; (45)

where !p ¼ Ep=mpc
2 is the proton Lorentz factor, " is the

soft photon energy, and me is the mass of electron. The
maximum energy of the electron (positron) is determined
by the kinematics of the process

Eemax ¼
!p

1þ 4!p"=ðmpc
2Þ ð

ffiffiffiffiffiffiffiffiffi
!p"

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!p""mec

2
q

Þ2:

(46)

This equation is valid when !p & 1 and " ' mp!pc
2. In

the interval

mec
2 ' !p" ' mpc

2; (47)

the maximum electron energy is

Eemax ¼ 4!2
p": (48)

This applies for Eemax ' Ep. In the limit of !p" & mpc
2

Eemax ¼ mpc
2!p ¼ Ep; (49)

i.e., the whole energy of the proton is transferred to one of
the electrons.
Let us denote by d# the differential cross section of the

process. The interaction rate is

dw ¼ c3
ðk ( pÞ
"Ep

d# ¼ c2
ðk ( upÞ
"!p

d#; (50)

where k and p are four-momenta of the photon and proton,
up ¼ p=mpc is the four-velocity of the proton, ðk ( pÞ ¼
"Ep=c

2 " kp is the scalar product of four-vectors. Let us
assume that in a unit volume we have fphð"Þd"d!=4$
photons between the energy interval ð"; "þ d"Þ and mov-
ing within the solid angle d!. Then the number of inter-
actions per unit of time is

N ¼ c2
Z
d"
d!

4$
fphð"Þ

ðk ( upÞ
"!p

Z
d#; (51)

where the integration is performed over all variables.
Below we perform calculations based on the following

approach. If we are interested in a distribution of some
variable %, which is a function ’ of particle momenta, this
distribution can be found introducing an additional
& function under the integral in Eq. (51):

dN

d%
¼ c2

Z
d"
d!

4$
fphð"Þ

ðk ( upÞ
"!p

Z
&ð%" ’Þd#: (52)

In particular, the energy distribution of electrons in the
laboratory frame can be calculated using the following

FIG. 9. The total cross sections of production of $þ and
$0 mesons as a function of energy of the incident gamma ray
in the rest frame of a proton. The experimental points are taken
from http://wwwppds.ihep.su:8001.

FIG. 8. The multiplicity of photons and leptons produced in
one interaction of a relativistic proton with 2.7 CMBR.
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where K! # #=~n. For the procedure described below, ~n
and K! are free parameters.

The emissivity of gamma rays is related to q!!E!"
though the equation

 

dN$
dE$

# 2
Z 1
Emin

q!!E!"####################
E2
! %m2

!

p dE!; (78)

where Emin # E$ $m2
!=4E$.

The feasibility of the %-functional approximation in the
energy range E< 100 GeV is explained by the following
reasons:

(1) In the energy range 1& E & 100 GeV the cross
section given by Eq. (73) is almost constant, and the
spectrum of protons given by Eq. (74) has a power-
law form. Therefore, the spectra of gamma rays and
leptons are also power law with the same index&. In

this case the %-functional approximation leads to
power-law spectra for any choice of parameters ~n
andK!. Therefore, for the givenK! and defining the
value of ~n from the condition of continuity of the
spectrum at the point E # 100 GeV, one can obtain
correct dependence and absolute value of the
gamma ray spectrum at 1& E & 100 GeV.

(2) For the value of K! # 0:17, the %-functional ap-
proximation for power-law proton spectra agrees
quite well, as is demonstrated in Ref. [13], with
numerical Monte Carlo calculations [12], even at
energies as low as E' 1 GeV (see also discussion
in [16]).
At lower energies one has to use, instead of Eq. (73),
a more accurate approximation for the inelastic
cross section:
 

"inel1!Ep" # !34:3$ 1:88L$ 0:25L2"

(
$

1%
!
Eth

Ep

"
4
%

2
mb; (79)

where Eth # mp $ 2m! $ m2
!=2mp # 1:22 )

10%3 TeV is the threshold energy of production of
!0 mesons. Equation (79) correctly describes the
cross section also at energies close to the threshold
and at Ep > 3Eth almost coincides with Eq. (73).
The comparison with experimental data [26] shows
that Eq. (79) can be used in a wider energy range of
protons, as it is demonstrated in Fig. 11.

In Fig. 12 we show the spectra of gamma rays and
leptons calculated for the proton distribution given by
Eq. (74). The constant A is determined from the condition

 

Z 1
1 TeV

EpJp!Ep"dEp # 1 erg cm%3: (80)

In the energy range E * 0:1 TeV, calculations are per-
formed using Eq. (72) with functions Fj!x; Ep" presented
in Sec. IV; at lower energies the %-functional approxima-
tion is used with K! # 0:17. As discussed above, ~n is
treated as a free parameter determined from the condition
to match the spectrum based on accurate calculations at

FIG. 12. Energy spectra of gamma rays and leptons from p-p interactions calculated for the distribution of protons given by Eq. (74)
with parameters E0 # 1000 TeV, ' # 1 and (a) & # 2, (b) & # 1:5. The dashed curves are calculated in the %-functional
approximation.

inel = (34 .3 + 1 .88 L + 0 .25 L 2)×

1 −
E th

E p

4 2

, mb

FIG. 11. Inelastic cross section of p-p interactions approxi-
mated by Eq. (79). The experimental data are from
http:wwwppds.ihep.su:8001/c5-5A.HTML, the open points cor-
respond to the cross sections which are used in the SIBYLL code.
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Gamma-ray & point-source constraints

• Neutrino source should be  
i) opaque to γ-rays, otherwise the accompanied γ-rays overshoot the Fermi data 
ii) Abundant, otherwise the nearest source should be detected as a point source
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Figure 2: Left: Comparison of the diffuse neutrino emission (solid magenta band) to the effec-
tive local density and luminosity of extragalactic neutrino source populations. We indicate sev-
eral candidate populations (î) by the required neutrino luminosity to account for the full diffuse
flux [17] (see also [25]). The lower (upper) edge of the band assumes rapid (no) redshift evolu-
tion. The dark-blue-shaded region indicates IceCube’s discovery potential of the closest source
of the population (E2fnµ+n̄µ ⌃ 10�12 TeV/cm2/s in the Northern Hemisphere [26]). Right: The
same comparison for transient neutrino sources parametrized by their local density rate and bolo-
metric energy [27]. The discovery potential of the closest source is based on 10 years of livetime
(E2Fnµ+n̄µ ⌃ 0.1 GeV/cm2 in the Northern Hemisphere [28]).

ingly, several IceCube analyses [10,58] show an excess of neutrinos below 100 TeV, indicating that
the sources are opaque to g-rays, as expected, e.g., for intense X-ray and soft g-ray sources [59].

B) Precision measurements of the neutrino flux can test the idea of cosmic particle unifica-
tion, in which sub-TeV g-rays, PeV neutrinos, and UHE cosmic rays can be explained simultane-
ously [17, 41, 60, 61]. If the neutrino flux is related to the sources of UHE cosmic rays, then there
is a different theoretical upper limit (the dashed green line in Fig. 3) to the neutrino flux [62, 63].
UHE cosmic ray sources can be embedded in environments that act as “cosmic-ray reservoirs”
where magnetic fields trap cosmic rays with energies far below the highest cosmic-ray energies.
The trapped cosmic rays collide with gas and produce a flux of g-rays and neutrinos. The measured
IceCube flux is consistent with predictions of some of these models [29,39,40]; see, however, [64].

C) The attenuation of UHE cosmic rays through resonant interactions with cosmic microwave
background photons results in the production of UHE neutrinos. This mechanism, first pointed out
by Greisen, Zatsepin and Kuzmin [67, 68] (GZK), causes a suppression of the UHE cosmic ray
proton flux beyond 5✓ 1010 GeV [67, 68] and gives rise to a flux of UHE neutrinos [69], not yet
detected, shown in Fig. 3. The observation of these cosmogenic neutrinos at ⇥EeV, or a stringent
upper limit on their flux, will severely restrict models of acceleration, source evolution, cosmic ray
composition, and transition from Galactic to extragalactic components, and serve as a complement
to cosmic-ray measurements to limit possible sources (e.g., [56, 69–87]).

The strong correspondence of high-energy messengers — suggested by the diffuse data in
Fig. 3 — provides excellent motivation for multi-messenger observations. Linking together obser-
vations of multiple messengers in time and space will allow direct correlation of neutrino sources
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The decay of neutral pions π0 → 2γ leads to γ-ray
emission. On production, the neutrino and γ-ray energy
generation rates are conservatively related as [27]

εγQεγ ≈
4

3K
ðενQενÞjεν¼εγ=2; ð3Þ

where γ-ray and neutrino energies are related as εγ ≈ 2εν.
However, the generated γ rays from the sources may not be
directly observable. First, γ rays above TeVenergies initiate
electromagnetic cascades in the extragalactic background
light (EBL) and cosmic microwave background (CMB) as
they propagate over cosmic distances. As a result, high-
energy γ rays are regenerated at sub-TeV energies [29].
Second, intrasource cascades via two-photon annihilation,
inverse-Compton scattering, and synchrotron radiation
processes can prevent direct γ-ray escape [30]. To see their
importance, we temporarily assume that the sources are
γ-ray transparent. We will see in the following that this
hypothesis leads to strong tensions with the IGRB, dis-
favored by the Fermi data.
In pp scenarios, neutrino and generated γ-ray spectra

follow the CR spectrum, assumed to be a power law. In CR
reservoirs such as galaxies and clusters, a spectral break
due to CR diffusion is naturally expected [14,15]. Thus, the
neutrino spectrum is approximately given by

ενQεν ∝
!
ε2−sν ðεν ≤ εbνÞ
ε2−s

0
ν ðεbν < ενÞ

ðppÞ; ð4Þ

where εbν is the break energy and the softening of the
spectrum, δ≡ s0 − s, is expected from the energy depend-
ence of the diffusion tensor [31]. In pp scenarios, the
corresponding generated γ-ray spectrum is also a power law
ε−sγ into the sub-TeV region [see Eq. (3)], where it directly
contributes to the IGRB [32] and Ref. [12] obtained a limit

s≲ 2.1–2.2 for generic pp scenarios that explain the
≳100 TeV neutrino data. The limit is tighter (s ∼ 2.0) if
one relaxes this condition by shifting εbν to ≲30 TeV to
account for the lower-energy data [35].
Motivated by results of Ref. [5], we calculate the diffuse

neutrino spectrum using Eq. (4) with s ¼ 2 and s0 ¼ 2.5 and
the corresponding γ-ray spectrum using Eq. (3). Following
Ref. [25], we numerically solve Boltzmann equations to
calculate intergalactic cascades, including two-photon anni-
hilation, inverse-Compton scattering, and adiabatic losses.
In the left panel of Fig. 1 we show the resulting all-flavor
neutrino and γ-ray fluxes as thick blue and thin red lines,
respectively, in comparison to the Fermi IGRB and IceCube
neutrino data [5]. To explain the ≲100 TeV neutrino data,
the contribution to the IGRB should be at the level of 100%
in the 3 GeV to 1 TeV range and softer fluxes with s≳ 2.0
clearly overshoot the data. As pointed out by Ref. [12], this
argument is conservative: the total extragalactic γ-ray back-
ground is dominated by a subclass of AGN, blazars (e.g.,
Refs. [36,37]), and their main emission is typically variable
and unlikely to be of pp origin [38,39]. Most of the high-
energy IGRB is believed to be accounted for by unresolved
blazars [40–42]. Although the IGRB should be decomposed
with caution, if this blazar interpretation is correct, there is
little room for CR reservoirs [12].
In pγ scenarios, neutrino and γ-ray spectra depend on a

target photon spectrum. The effective optical depth to
photomeson production (fpγ) typically increases with
CR energy, so that the neutrino spectrum is harder than
the CR spectrum. However, it cannot be too hard since the
decay kinematics of pions gives ενQεν ∝ ε2ν as a low-energy
neutrino spectrum [43]. In minimal pγ scenarios, where
neutrinos with εν ≲ εbν ≲ 25 TeV are produced by CRs at
the pion production threshold, the neutrino spectrum is
approximately given by

FIG. 1. Left panel: All-flavor neutrino (thick blue lines) and isotropic diffuse γ-ray (thin red lines) fluxes for pp and minimal pγ
scenarios of Eqs. (4) and (5) that account for the latest IceCube data from ∼10 TeV to ∼2 PeV energies [5], where s0 ¼ sob ¼ 2.5 is
used. While pp scenarios require εbν ¼ 25 TeVwith a strong tension with the Fermi IGRB [13],minimal pγ scenarios allow the range εbν
of 6–25 TeV (shaded regions) as long as the sources are transparent to γ rays (see the main text for details). Right panel: Same as the left
panel, but now showing neutrino fluxes of AGN core and choked jet models from Refs. [21,24]. To illustrate the strength of diffuse γ-ray
constraints, we pretend that the sources were transparent to γ rays.
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FIG. 5: Left: The 2D distribution of events in one year of data for the final event selection as a function of
reconstructed declination and estimated energy. The 90% energy range for the data (black), as well as simulated

astrophysical signal Monte-Carlo (MC) for an E�2 and an E�3 spectrum are shown in magenta and orange
respectively as a guide for the relevant energy range of IceCube. Right: The e↵ective area as a function of neutrino
energy for the IC86 2012-2018 event selection averaged across the declination band for several declination bins using

simulated data.

FIG. 6: Skymap of -log10(plocal), where plocal is the local pre-trial p-value, for the sky between ±82� declination in
equatorial coordinates. The Northern and Southern hemisphere hotspots, defined as the most significant plocal in

that hemisphere, are indicated with black circles.

125 hrs of MAGIC observations and about 4 hrs of H.E.S.S. observations [31, 39, 40] in Fig. 9.

14

FIG. 9: The best-fit time-integrated astrophysical power-law neutrino flux obtained using the 10 year IceCube event
selection in the direction of NGC 1068. The shaded regions represent the 1, 2 & 3� error regions on the spectrum as
seen in Fig. 4. This fit is compared to the � and corresponding ⌫ AGN outflow models and the Fermi Pass8 (P8)
results found in Lamastra et al. [41] (which do not include modelled absorption e↵ects [36]). AGN-driven outflow
parameters are set at Rout=100 pc, vout=200 km/s, p = 2, and Lkin=1.5⇥1042 erg/s; violet: LAGN=4.2⇥1044 erg/s,

nH=104 cm�3, Fcal = 1, ⌘p = 0.2, ⌘e = 0.02, BISM = 30µG; magenta: LAGN=2.1⇥1045 erg/s, nH=120 cm�3,
Fcal = 0.5, ⌘p = 0.5, ⌘e = 0.4, BISM = 250µG; pale pink: LAGN=4.2⇥1044 erg/s, nH=104 cm�3, Fcal = 1, ⌘p = 0.3,
⌘e = 0.1, BISM = 600µG. The upper-limits in �-ray observations are taken from from H.E.S.S. (blue) Aharonian

et al. [40] and from MAGIC (black) Acciari et al. [39].

Hint of ν from Accretion flows

• Point source search with 10-year data set

7

• Hottest Point (2.9σ) : M77 (NGC 1068; Seyfert 2)

• Lν > Lγ → “Hidden Source”

IceCube 2020

M77 (NGC 1068)

Let us discuss non-thermal process in accretion flows

IceCube 2020



distributions (SEDs) are constructed from the data and from
empirical relations, and then we compute neutrino and
cascade gamma-ray spectra by consistently solving particle
transport equations. We demonstrate the importance of
future MeV gamma-ray observations for revealing the
origin of IceCube neutrinos especially in the medium-
energy (∼10–100 TeV) range and for testing neutrino
emission from NGC 1068 and other AGN.
We use a notation with Qx ¼ Q × 10x in CGS units.
Phenomenological prescription of AGN disk coronae.—

We begin by providing a phenomenological disk-corona
model based on the existing data. Multiwavelength SEDs
of Seyfert galaxies have been extensively studied, consist-
ing of several components; radio emission (see Ref. [60]),
infrared emission from a dust torus [61], optical and
ultraviolet components from an accretion disk [62], and
x rays from a corona [33]. The latter two components are
relevant for this work.
The “blue” bump, which has been seen in many AGN, is

attributed to multitemperature blackbody emission from a
geometrically thin, optically thick disk [63]. The averaged
SEDs are provided in Ref. [64] as a function of the
Eddington ratio, λEdd ¼ Lbol=LEdd, where Lbol and LEdd ≈
1.26 × 1045 erg s−1ðM=107 M⊙Þ are bolometric and
Eddington luminosities, respectively, and M is the
SMBH mass. The disk component is expected to have a
cutoff in the ultraviolet range. Hot thermal electrons in a
corona, with an electron temperature of Te ∼ 109 K,
energize the disk photons by Compton upscattering. The
consequent x-ray spectrum can be described by a power
law with an exponential cutoff, in which the photon index
(ΓX) and the cutoff energy (εX;cut) can also be estimated
from λEdd [31,65]. Observations have revealed the relation-
ship between the x-ray luminosity LX and Lbol [66] [where
one typically sees LX ∼ ð0.01 − 0.1ÞLbol], by which the
disk-corona SEDs can be modeled as a function of LX and
M. In this work, we consider contributions from AGN with
the typical SMBH mass for a given LX, using M ≈ 2.0 ×
107 M⊙ðLX=1.16 × 1043 erg s−1Þ0.746 [67]. The resulting
disk-corona SED templates in our model are shown in

Fig. 2 (see Supplemental Material [68] for details), which
enables us to quantitatively evaluate CR, neutrino and
cascade gamma-ray emission.
Next we estimate the nucleon density np and coronal

magnetic field strength B. Let us consider a corona with
the radius R≡RRS and the scale height H, where R is
the normalized coronal radius and RS ¼ 2GM=c2 is the
Schwarzschild radius. Then the nucleon density is
expressed by np ≈ τT=ðσTHÞ, where τT is the Thomson
optical depth that is typically ∼0.1–1. The standard
accretion theory [69,70] gives the coronal scale height
H≈ðCs=VKÞRRS¼RRS=

ffiffiffi
3

p
, whereCs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBTp=mp

p
¼

c=
ffiffiffiffiffiffiffi
6R

p
is the sound velocity, and VK ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GM=R

p
¼

c=
ffiffiffiffiffiffiffi
2R

p
is the Keplerian velocity. For an optically thin

corona, the electron temperature is estimated by
Te ≈ εX;cut=ð2kBÞ, and τT is empirically determined from
ΓX and kBTe [31]. We expect that thermal protons are at
the virial temperature Tp ¼ GMmp=ð3RRSkBÞ ¼ mpc2=
ð6RkBÞ, implying that the corona may be characterized by
two temperatures, i.e.,Tp > Te [71,72]. Finally, themagnetic
field is given by B ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πnpkBTp=β

p
with plasma beta (β).

Many physical quantities (including the SEDs) can be
estimated observationally and empirically. Thus, for a given
LX, parameters characterizing the corona (R, β, α) are
remaining. They are also constrained in a certain range by
observations [73,74] and numerical simulations [45,47].
For example, recent MHD simulations show that β in the
coronae can be as low as 0.1–10 (e.g., Refs. [41,46]). We
assume β ≲ 1–3 and α ¼ 0.1 for the viscosity parameter
[63], and adopt R ¼ 30.
Stochastic proton acceleration in coronae.—Standard

AGN coronae are magnetized and turbulent, in which it is
natural that protons are stochastically accelerated via
plasma turbulence or magnetic reconnections. In this work,
we solve the known Fokker-Planck equation that can
describe the second order Fermi acceleration process

FIG. 1. Schematic picture of the AGN disk-corona scenario.
Protons are accelerated by plasma turbulence generated in the
coronae, and produce high-energy neutrinos and cascaded
gamma rays via interactions with matter and radiation.

FIG. 2. Disk-corona SEDs used in this work, for LX ¼ 1042,
1043, 1044, 1045, and 1046 erg s−1 (from bottom to top). See text
for details.
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Figure 7
Composite SEDs for radio-quiet AGNs binned by Eddington ratio. The SEDs are normalized at 1 µm.
(Adapted from L.C. Ho, in preparation.)

nuclei (Ho 1999b, 2002a; Ho et al. 2000) and a substantial fraction of Seyfert nuclei (Ho & Peng
2001). Defining radio-loudness based on the relative strength of the radio and X-ray emission,
RX ≡ νLν (5 GHz)/LX, Terashima & Wilson (2003b) also find that LINERs tend to be radio-
loud, here taken to be RX > 10−4.5. Moreover, the degree of radio-loudness scales inversely with
Lbol/LEdd (Ho 2002a; Terashima & Wilson 2003b; Wang, Luo & Ho 2004; Greene, Ho & Ulvestad
2006; Panessa et al. 2007; Sikora, Stawarz & Lasota 2007; L.C. Ho, in preparation; see Figure 10b).

In a parallel development, studies of the low-luminosity, often LINER-like nuclei of FR I radio
galaxies also support the notion that they lack a UV bump. M84 (Bower et al. 2000) and M87
(Sabra et al. 2003) are two familiar examples, but it has been well documented that FR I nuclei
tend to exhibit flat αox (Donato, Sambruna & Gliozzi 2004; Balmaverde, Capetti & Grandi 2006;
Gliozzi et al. 2008) and steep slopes in the optical (Chiaberge, Capetti & Celotti 1999; Verdoes
Kleijn et al. 2002) and optical-UV (Chiaberge et al. 2002).

Finally, I note that the UV spectral slope can be indirectly constrained from considering the
strength of the He II λ4686 line. Although this line is clearly detected in Pictor A (Carswell et al.
1984, Filippenko 1985), its weakness in NGC 1052 prompted Péquignot (1984) to deduce that
the ionizing spectrum must show a sharp cutoff above the He+ ionization limit (54.4 eV). In this
respect, NGC 1052 is quite representative of LINERs in general. He II λ4686 was not detected
convincingly in a single case among a sample of 159 LINERs in the entire Palomar survey (Ho,
Filippenko & Sargent 1997a). Starlight contamination surely contributes partly to this, but the line
has also eluded detection in HST spectra (e.g., Ho, Filippenko & Sargent 1996; Nicholson et al.
1998; Barth et al. 2001b; Sabra et al. 2003; Sarzi et al. 2005; Shields et al. 2007), which indicates
that it is truly intrinsically very weak. To a first approximation, the ratio of He II λ4686 to Hβ

reflects the relative intensity of the ionizing continuum between 1 and 4 Ryd. For an ionizing
spectrum fν ∝ να , case B recombination predicts He II λ4686/Hβ = 1.99 × 4α (Penston &
Fosbury 1978). The current observational limits of He II λ4686/Hβ ! 0.1 thus imply α ! − 2,
qualitatively consistent with the evidence from the SED studies.

Maoz (2007) has offered an alternative viewpoint to the one presented above. Using a sample
of 13 LINERs with variable UV nuclei, he argues that their SEDs do not differ appreciably from
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Protons in coronae & RIAFs are collisionless 
→ Non-thermal proton production

Luminous & Low-luminosity AGN

• QSO: Blue bump & X-ray →Optically thick disk + coronae
• LLAGN: No blue bump & X-ray →Optically thin flow  

[Radiatively Inefficient Accretion Flow (RIAF)]
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UV-luminosity dichotomy by mass accretion rates

RIAF
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Gas accretion with angular momentum 

→ formation of rotationally supported disks 

Accretion flows develop MHD turbulence by MRI

BH
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Figure 3. Colormaps in the meridional plane for run A. Left: density on the φ = 0 plane. Center: magnetic energy density, B2/(8π ), on the φ = 0 plane. Right:
Azimuthally averaged Vφ , 〈Vφ〉L, on the R − φ plane. The white lines are iso-contours of 〈Vφ〉L.

Vbul, φ as the background velocity for analyses of the test-particle
simulations in Section 3.2.

Fig. 4 plots the colormaps of the density (upper) and the magnetic
energy (lower) on the equatorial plane. The magnetic fields are
frozen in the differentially rotating fluid elements that fall to the
BH. This creates the spiral structure as seen in the figure. We can
also see that the fluctuation of the density is much smaller than
that of the magnetic field energy density. This implies that the fast
modes are a sub-dominant component in the MRI turbulence.

To clarify the importance of the modes of the MHD waves (fast,
slow, and Alfven), we evaluate the Pearson correlation coefficients
between the fluctuations of the density, δρ(R, θ,φ) = ρ − 〈ρ〉L,
and the magnetic energy, δB2(R, θ, φ) = B2 − 〈B2〉L. According
to the linear MHD wave theory, the fast mode has a positive
correlation, the slow mode has a negative correlation, and the Alfven
mode has no correlation. We evaluate the correlation coefficients
as a function of R and θ , and average over them with weights
associated with the area in the meridional plane. The resulting
coefficients indicate that the density and magnetic energy are weakly
anticorrelated: the value of the coefficient is −0.22 in the disc
region (|cos θ ! 0.45|) for run A. The lower resolution runs have
higher coefficients, i.e. the anticorrelations are weaker, but no run
has a positive correlation. Therefore, the fast modes do not play
an important role in this system. This result is natural in the sub-
Alfvenic and sub-sonic turbulence.

Finally, we discuss the azimuthal power spectra of the turbulence
(cf. Sorathia et al. 2012; Suzuki & Inutsuka 2014; see Parkin &
Bicknell 2013 for three-dimensional power spectra). We take the
Fourier transformation in the azimuthal direction,

Xm = 1√
2π

∫
X exp(−imφ)dφ, (13)

where m = kφR (kφ is the wavenumber in the φ direction). Then,
we take the average of the power spectrum over the disc region:

Pm =
∫

|Xm|2RdRdθ∫
RdRdθ

, (14)

where the integration region is set to be 0.1Rc ≤ R ≤ 0.6Rc and
|cos θ | ≤ 0.45. We plot the power spectra, mPm, for the magnetic

Figure 4. Colormaps in the equatorial plane for run A. The upper and lower
panels show the density and the magnetic energy density, respectively.
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Stochastic Acceleration by Turbulence
10

・Consider plasma with turbulent fields

Some gain E, others lose E →diffusion in E space

E’ > E0 E’< E0

＜〜〜〜

waveparticle

＜〜〜〜

waveparticle

E0 E0

E’
E’

e.g.) Fermi 1949, Petrosian 2012

 depends on the particle-wave interaction processes
gyro-resonance in Kolmogorov turbulence :  
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light [19]. We adopted the shearing box boundary condition
established by MHD simulations [20].
For the initial condition, a drifting Maxwellian velocity

distribution function was assumed in the local rotating
frame with angular velocityΩ0ðr0Þ. The drift velocity in the
y direction vyðxÞ was given by vyðxÞ ¼ rΩðrÞ − rΩ0ðr0Þ≃
−qΩ0ðr0Þx, and the radial velocity vx and the vertical
velocity vz were both zero. In order to save CPU time, we
set up the pair plasma, but the linear behavior of the MRI in
the pair plasma was the same as that of ion-electron
plasmas [19]. A nonrelativistic isotropic plasma pressure
with a high plasma β ¼ 8πðpþ þ p−Þ=B2

0 ¼ 1536 was
assumed, where the electron and positron gas pressures
were related to the thermal velocities vt% by
p% ¼ ð3=2Þm%nv2t%. The initial magnetic field was ori-
ented purely vertical to the accretion disk, i.e.,
~B ¼ ð0; 0; B0Þ. The ratio of the cyclotron frequency to
the disk angular velocity was fixed at Ωc%=Ω0 ¼ %10,
where Ωc% ¼ e%B0=m%c. The grid size Δ was set to
23=2ðvt%=Ωp%Þ, where Ωp% ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πne2=m%

p
is the pair

plasma frequency. The Alfvén velocity is defined as
VA ¼ B=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πm%n

p
, so that the plasma β is equal to

3v2t%=V
2
A. The parameters used were ðVA=Ω0Þ=Δ ¼ 25,

ðvt%=Ωc%Þ=Δ ¼ 56.4, VA=c ¼ 6.25 × 10−3. Nx, Ny, and
Nz are the grid sizes in the x, y, and z directions,
respectively, and we assumed Nx ¼ Nz ¼ Nz ¼ 300 in

this Letter. Lx ¼ Ly ¼ Lz ¼ ðNxΔÞ=λ ¼ 1.91 is the physi-
cal size normalized by λ ¼ 2πVA=Ω0. The number of
particles per cell was set to Np=cell ¼ 40.
Figure 1 shows the time evolution of the magnetic field

lines (greenish lines) and the structure of the high-density
regions (sandwiched by the reddish curved planes). Color
contours in the background at Y ¼ 1.91 and X ¼ 1.91
show the angular velocity vy in the local rotating frame. In
the early stage at Torbit ¼ Ω0t=2π ¼ 0.31 in Fig. 1(a), the
magnetic field lines are parallel to the z axis, and the
Keplerian motion or differential motion of vy can be seen as
the color contour at Y ¼ 1.91, where the reddish (bluish)
region corresponds to a positive (negative) toroidal veloc-
ity. As time passes, the vertical magnetic fields start to get
distorted due to the MRI, and they are stretched out in the
toroidal direction because of the Keplerian motion at
Torbit ¼ 6.89 in Fig. 1(b). This stretching motion can
amplify the magnetic field and form two inward- and
outward-flowing streams with a high plasma density and
strong electric current called the channel flow. The reddish
regions sandwiched by two surfaces in Fig. 1(c) show the
high-density channel flow with ρ ≥ hρiþ 2σρ where hρi
and σρ are the average density and standard deviation of
density distribution in the simulation domain, respectively.
The amplification of the magnetic field stretched by the

Keplerian motion may be balanced by the magnetic field

FIG. 1 (color online). Time evolution of the magnetorotational instability. Panels (a) and (b) show the magnetic field lines (greenish
lines) and angular velocities in the background at Y ¼ y=λ ¼ 1.91 and X ¼ x=λ ¼ 1.91 (color contour), and panels (c)–(e) depict the
high-density regions as reddish curved planes. Panels (b) and (c) are at the same time stage. Panel (f): The energy spectra during the MRI
at Torbit ¼ 0.31, 6.89, 7.18, 8.84, and 14.28. The dashed line is a Maxwellian fitting for Torbit ¼ 7.18.
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Magnetic reconnection produce relativistic particles  
 → Higher energy particles interact with larger scale turbulence

PIC in Shearing Box
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ity. As time passes, the vertical magnetic fields start to get
distorted due to the MRI, and they are stretched out in the
toroidal direction because of the Keplerian motion at
Torbit ¼ 6.89 in Fig. 1(b). This stretching motion can
amplify the magnetic field and form two inward- and
outward-flowing streams with a high plasma density and
strong electric current called the channel flow. The reddish
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Keplerian motion may be balanced by the magnetic field

FIG. 1 (color online). Time evolution of the magnetorotational instability. Panels (a) and (b) show the magnetic field lines (greenish
lines) and angular velocities in the background at Y ¼ y=λ ¼ 1.91 and X ¼ x=λ ¼ 1.91 (color contour), and panels (c)–(e) depict the
high-density regions as reddish curved planes. Panels (b) and (c) are at the same time stage. Panel (f): The energy spectra during the MRI
at Torbit ¼ 0.31, 6.89, 7.18, 8.84, and 14.28. The dashed line is a Maxwellian fitting for Torbit ¼ 7.18.
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巨大ブラックホール
(太陽質量の１億倍)

ブラックホール降着円盤とは？
•ブラックホールに引きつけられたガスは, 回転しながらブラックホールに
吸い込まれる (降着円盤 or 降着流). 

•ガスの重力エネルギーが変換され, 明るく輝き, 場合によってはジェット
を噴出する.

•高エネルギー天体のエネルギー源

白鳥座X-1の想像図

恒星(可視光で光る)

降着円盤
(X線で光る)

ブラックホール
(太陽質量の10倍程度)

銀河(白)

ジェット(赤)

電波銀河
の観測
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Particle-In-Cell Simulations 
with turbulence

Note also that in the 3D case the magnetic energy decays faster
than in the 2D case (compare insets of Figures 3 and 4). We will
show that this leads to a reduced particle acceleration rate at late
times.

3.2. Particle Spectrum

The most interesting outcome of the turbulent cascade is the
generation of a large population of nonthermal particles. This is
shown in Figure 5 (for the 2D setup), where the time evolution
of the particle energy spectrum ( )H �dN d ln 1 is presented
(H � � E mc1 k

2 is the normalized particle kinetic energy).
As a result of turbulent field dissipation, the spectrum shifts to
energies much larger than the initial Maxwellian, which is

shown by the blue line peaking at �H H� _ �1 1 0.6th0 . At
late times, when most of the turbulent energy has decayed, the
spectrum stops evolving (orange and red lines): it peaks at
γ−1∼5 and extends well beyond the peak into a nonthermal
tail of ultrarelativistic particles that can be described by a power
law

⎛
⎝⎜

⎞
⎠⎟ ( )

H
H
H

H H H�
�
�

� �
�

dN
d

N
1
1

, for , 7
st

p

st c0

and a sharp cutoff for γ�γc. Here N0 is the normalization of
the power law and p is the power-law index, which is about 2.8
for the simulation results presented in the main panel of
Figure 5 (note that in our figures we plot dN/dln(γ−1) to

Figure 2. 3D plots of different fluid structures in fully developed 3D turbulence (at ct/l=2.7) with σ0=10, δBrms0/B0=1, and L/de0=820 (with l=L/4). The
displayed quantities are (from left to right, top to bottom) the fluctuation magnetic energy density in units of B0

2/8π, the current density Jz along the mean magnetic
field in units of en0c, the bulk dimensionless four-velocity Γβ, and the particle density ratio n/n0. Note that the color bars for Γβ and n/n0 are in logarithmic scale. An
animation showing the current density Jz in different x-y slices can be found at https://doi.org/10.7916/d8-prt9-kn88.
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power-law index p for increasing magnetization σ0 (see also
Zhdankin et al. 2017; Comisso & Sironi 2018) is in analogy
with the results of PIC simulations of relativistic magnetic
reconnection (Guo et al. 2014; Sironi & Spitkovsky 2014;
Werner et al. 2016; Lyutikov et al. 2017; Petropoulou &
Sironi 2018). We will see that magnetic reconnection plays an
important role also in the turbulence scenario considered here.
However, as we show below, its role is confined to the initial
stages of particle acceleration, while the dominant acceleration
process is given by stochastic scattering off turbulent
fluctuations, which determines the slope and the cutoff of the
high-energy power-law tail.

A similar picture holds in 3D, i.e., a generic by-product of
the magnetized turbulence cascade is the production of a large
number of nonthermal particles. Figure 6 shows the evolution
of the particle energy spectrum ( )H �dN d ln 1 starting from
the initial Maxwellian peaked at �H H� _ �1 1 0.6th0 . As
time progresses, the particle energy spectrum shifts to higher
energies and develops a high-energy tail containing a large
fraction of particles. At late times, when most of the turbulent
energy has decayed, the particle energy spectrum stops
evolving (orange and red lines), and it peaks at γ−1∼7. It
extends well beyond the peak into a nonthermal tail of
ultrarelativistic particles that can be described by a power law
with an index p∼2.9 (main panel of Figure 6). As in the 2D
case, the normalization of the power law is close to the peak of
the spectrum, giving a large fraction of nonthermal particles. At
ct/l=12 we find that about 16% of particles have or exceed
twice the energy of the spectral peak, which provides an
indication of the percentage of particles in the nonthermal tail
ζnt.

In order to understand the dependence of the high-energy
power-law slope on the initial magnetization in 3D, we performed
four large-scale 3D simulations with { }T � 5, 10, 20, 400 and
same δBrms0/B0=1, L/de0=820. The power-law index p
decreases for increasing σ0 (see top inset in Figure 6), with
values that are close to the ones from the corresponding 2D
simulations with δBrms0/B0=1 (blue curve from the inset in
Figure 5). Here we also show the scaling of the high-energy cutoff

γc (bottom inset in Figure 6), defined as the Lorentz factor where
the spectrum drops one order of magnitude below the power-law
best fit. The high-energy cutoff γc increases as H Trc 0

1 2

(compare with dashed line in the inset), which is consistent with
the expectation from Equations (9) and (10) for a σ0-independent
domain size L/de0 and fixed δBrms0/B0.
Several astrophysical systems are thought to have δBrms/B0

larger than unity (e.g., E _B B 6rms
2

0
2 in some regions of the

Crab Nebula; Lyutikov et al. 2019). Therefore, we have
performed three additional 2D simulations with initial ratios
δBrms0/B0=1, 2, 4, with fixed initial magnetization σ0=40
and a larger domain size L/de0=3280. Figure 7 shows that the
power law becomes harder with increasing δBrms0/B0, with
p<2 for large initial fluctuations. In this case, both
Equations (8) and (9) should be understood as upper limits
that are subject to energy constraints, as we now discuss. The
starting point of the power-law tail, γst, could be lower than
indicated in Equation (8), if only a minor fraction of the
available energy goes into thermal particles, while most of the
energy goes into the nonthermal tail. Also, while in the case
p>2 one can have from Equation (9) that H l dc as kIde0 →
0, the case 1<p<2 has a lower attainable high-energy cutoff
γc, since the mean energy per particle in the power-law tail has
to be (Sironi & Spitkovsky 2014)
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where χ is the fraction of turbulent magnetic energy converted
into particles belonging to the power-law tail.
We conclude this section with the results of 2D simulations

having different initial plasma temperature θ0. From Figure 8,
we can see that the slope p, the fraction of nonthermal particles,
and the extent of the nonthermal tail γc/γst do not depend on
θ0. Indeed, this plot shows that spectra obtained from
simulations with different θ0 nearly overlap, when shifted by
an amount equal to the initial thermal Lorentz factor γth0. The
role of the initial choice of temperature is only to produce an
energy rescaling, since both γst and γc are proportional to γth0,

Figure 6. Time evolution of the particle spectrum dN/dln(γ−1) for the
simulation in Figure 2. At late times, the spectrum displays a power-law tail
with index ( )H� � � _p d N dlog log 1 2.9. About 16% of the particles
have γ�15 at ct/l=12 (twice the peak of the particle energy spectrum),
which gives an indication of the percentage of nonthermal particles. The inset
shows the power-law index p and the cutoff Lorentz factor γc as a function of
the magnetization σ0. The dashed line indicates the scaling H Trc 0

1 2 expected
for a σ0-independent domain size L/de0=820.

Figure 7. Particle spectra dN/dln(γ−1) at late times for simulations with
magnetization σ0=40, system size L/de0=3280 (with l=L/8), and
different values of initial fluctuations { }E �B B 1, 2, 4rms0 0 . For the case
with larger initial fluctuations, the late-time particle spectrum displays a power-
law tail with index ( )H� � � _p d N dlog log 1 1.9, and about 31% of the
particles have γ�25 at ct/l=12 (twice the peak of the particle energy
spectrum at that time), which gives an indication of the percentage of
nonthermal particles.
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magnetic field. The peak of the pdf for the particles at injection is
at a lower value of ∣ ∣J Jz p z, ,rms than in 2D, and in general there are
weaker ∣ ∣J Jz p z, ,rms wings for both the pdf of all particles and the
pdf of particles experiencing injection. This can be attributed to
the lower levels of intermittency that characterize 3D magnetized
turbulence with respect to its 2D counterpart (e.g., Biskamp 2003).
Nevertheless, about 80% of the particles are injected in regions
with ∣ ∣ .J J2z p z, ,rms. On the other hand, only approximately 11%
of the entire population of particles (at the representative time
ct/l=2.5) reside at ∣ ∣ .J J2z p z, ,rms. Therefore, also in 3D, special
locations of high electric current density are associated with
particle injection.

The spatial locations with ∣ ∣ .J J2z z,rms are associated with
current ribbons that are predominantly elongated along the
mean magnetic field B0. In Figure 12, we show the morphology
of these regions for two representative planes perpendicular to
B0 (taken at ct/l=2.5). These regions are sheet-like structures
with a variety of length scales. We can see that the majority of
the particles undergoing injection, whose location is shown by
the red circles, resides at these current sheets. A large fraction
of these current sheets are active reconnection layers,
fragmenting into plasmoids. A typical example of such
reconnecting current sheets is shown in Figure 13. We can

see four flux ropes (3D plasmoids) that are formed within the
current sheet (and elongated in the direction of the mean
magnetic field), which is the typical signature of fast plasmoid-
mediated reconnection. We will see in the next subsection that
current sheets undergoing fast reconnection are important for
having efficient particle injection, as they are capable to
“process” a significant fraction of particles (from the thermal
pool) during their lifetime in the turbulent plasma.

Figure 11. Relation between particle injection and electric current density from
the 3D simulation with σ0=10, δBrms0/B0=1, and L/de0=820. Top panel:
time evolution of the Lorentz factor for 10 representative particles selected to
end up in different energy bins at ct/l=12 (matching the different colors in
the color bar on the right). Bottom panel: pdf’s of ∣ ∣J Jz p z, ,rms experienced by the
high-energy particles at their tinj (red circles) and by all our tracked particles at
ct/l=2.5 (blue diamonds). About 80% of the high-energy particles are
injected at regions with ∣ ∣ .J J2z p z, ,rms.

Figure 12. Spatial correlation between particle injection and reconnecting
current sheets for the same 3D simulation as in Figure 11. In black, we show
regions of space with strong current density ∣ ∣ � §.J J2z z

2 1 2 at ct/l=2.5, for
two representative planes of the 3D domain, taken at z/l=0.6 (top panel) and
z/l=3.4 (bottom panel). The large-scale mean magnetic field B0 is in the out-
of-plane direction. The red circles indicate the positions of particles undergoing
injection around this time.
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TABLE II. Resulting physical quantities for various values of X-ray luminosity. The last two column shows the values for
models A/B/C

logLX,obs logLX,calc log ṁ logNp B ⌧T ⇥e logE�� logLp PCR/Pthrml

[erg s�1] [erg s�1] [cm�3] [G] [MeV] [erg s�1] [%]
38.78 38.29 -3.33 7.33 56.24 -2.38 2.75 5.58 40.24/40.07/40.8 15.8/10.7/56.1
39.68 39.73 -2.88 7.78 94.73 -1.93 2.32 5.16 40.70/40.52/41.2 15.3/10.2/51.6
40.59 40.83 -2.43 8.23 159.56 -1.48 1.79 4.04 41.15/40.97/41.7 13.9/9.3/48.4
41.50 41.64 -1.98 8.68 268.77 -1.02 1.30 3.25 41.60/41.43/42.1 11.3/7.2/41.1
42.40 42.47 -1.52 9.14 452.72 -0.57 0.91 2.14 42.05/41.88/42.6 7.7/4.1/28.6

tacc = "
2

p/D"p , is longer than tfall for "p > 1.5⇥ 104 GeV
for ṁ ⇠ 10�2 and for "p > 5.1⇥ 103 GeV for ṁ ⇠ 10�3,
the cuto↵ energy in the proton spectrum appears at a
much higher energy due to its hard spectral index and
gradual cuto↵ [cf., 26, 61]. For models B and C, the
resulting proton luminosity is almost identical to the in-
jection spectrum, because the infall dominates over the
other loss processes in all the energy range.

The pp inelastic collisions and photomeson interactions
produce pions which decay to neutrinos. We calculate the
neutrino spectrum from pp collisions using the formalism
given by Ref. [62]. For the neutrinos by p� interac-
tion, we use a semi-analytic prescription given in Ref.
[59, 63]. Owing to the moderate magnetic field strength
and plasma density, we can ignore the e↵ect of meson
cooling, as long as we focus on sub-PeV neutrinos. Then,
the neutrino flavor ratio is (⌫e, ⌫µ, ⌫⌧ ) = (1, 2, 0) at
the source and (1, 1, 1) on Earth, due to the neutrino os-
cillation during propagation. The hadronic interactions
also produce gamma rays and electron/positron pairs,
which initiate electromagnetic cascades. We calculate
the cascade emission by solving the kinetic equations of
electron/positron pairs and photons. We approximately
treat the pair injection processes by Bethe-heitler pro-
cess and photomeson production. See the accompanying
paper and Refs. [64, 65] for details.

The resulting neutrino and gamma-ray spectra are
shown in Figure 1. For the higher accretion rate case,
the pp and p� interactions produce comparable amounts
of neutrinos at "⌫ >⇠ 1014 eV. The cascade photons show
a flat spectrum below ⇠ 109 eV, often seen in well-
developed cascades [66]. On the other hand, in the lower
accretion rate case, the neutrinos are predominantly pro-
duced by pp collisions. The cascade spectrum depends on
the models; Models A and B show a high-energy cuto↵
around 109 eV, while the spectrum extends up to 1011 eV
for model C. The normalization of the cascade emission
is the highest in model C due to its higher cosmic-ray
luminosity (see Table II).

Di↵use Intensities.— The di↵use neutrino and
gamma-ray intensities are calculated as (e.g., Refs. [18,

26, 67])

�i =
c

4⇡H0

Z
dzp

(1 + z)3⌦m + ⌦⇤

Z
dLH↵⇢H↵

L"i

"i
e
�⌧i,IGM ,

(3)
where ⇢H↵ is the H↵ luminosity function, ⌧i,IGM is
the optical depth in intergalactic medium, and we use
H0 ⇠ 70 km s�1 Mpc�1, ⌦M ⇠ 0.3, and ⌦⇤ ⇠ 0.7.
H↵ luminosity function is given by Ref. [68]: ⇢H↵ ⇡
(⇢⇤/L⇤)/[(LH↵/L⇤)s1 + (LH↵/L⇤)s2 ], where ⇢⇤ ' 4.11 ⇥
10�5 Mpc�3, L⇤ = 3.26 ⇥ 1041 erg s�1, s1 = 2.78,
and s2 = 1.88. We extrapolate this luminosity func-
tion to Lmin = 1038 erg s�1, below which the Palo-
mar survey finds a hint of a flattening [69]. The sur-
vey also indicates a correlation between LX and LH↵ for
LLAGNs: LX ⇡ 5 � 7LH↵ [69]. We use a correction
factor X/H↵ = LX/LH↵ = 6.0. Then, the luminosity
integration is performed in the range of 1038 erg s�1 
LH↵  ⌘radṁLEdd/(X/H↵bol/X) ' 4.2 ⇥ 1041 erg s�1.
Since dimmer AGNs tend to have weaker redshift evolu-
tion [70–72], we assume no redshift evolution of the lu-
minosity function. The mass of SMBHs in local Seyfert
galaxies does not show any correlation with X-ray lu-
minosity and H↵ luminosity [73]. Ref. [74] provides a
sample of LLAGNs, and the average and median values
of log(MBH/M�) are 8.0 and 8.1, respectively. Also, the
local SMBH mass functions in the previous studies show
that the energy budget is dominated by the black holes
of M ⇠ 108�3⇥108 M� if the Eddington ratio function
is independent of the SMBH mass [48, 71, 75]. Hence,
we use MBH = 108 M� as a reference value. We use
⌧⌫,IGM = 0 and the values in Ref. [76] for ⌧�,IGM.
Figure 2 shows the resulting gamma-ray and neutrino

intensities. Our model can reproduce the soft gamma-
ray and neutrino data simultaneously. The soft gamma
rays are produced by the thermal electrons, while non-
thermal protons produce the high-energy neutrinos. We
tabulate the required amount of cosmic-ray luminosity
and pressure ratio of cosmic rays and thermal protons
in Table II. The pressure ratio is moderate, ⇠ 0.1, in
models A and B, while model C requires a higher value,
⇠ 0.5, which is challenging to achieve through stochastic
acceleration.
The GeV flux is considerably attenuated in the RIAF

and consistent with the Fermi data, demonstrating that

• Luminous AGNs can account for X-ray and 
10 TeV neutrino backgrounds

• LLAGN can explain PeV ν and  
MeV γ backgrounds

• GeV γs are attenuated inside accretion 
flows → well below the Fermi data

• PCR ~ 0.01Pth → reasonable in the sense 
that CR energy < Magnetic energy 

• AGN cores can account for a 
broad range of γ & ν bkgd

Preliminary 
γ by thermal e

ν by non-thermal p

γ by EM cascades

Coronae

RIAFs

Coronae

RIAFs

distributions (SEDs) are constructed from the data and from
empirical relations, and then we compute neutrino and
cascade gamma-ray spectra by consistently solving particle
transport equations. We demonstrate the importance of
future MeV gamma-ray observations for revealing the
origin of IceCube neutrinos especially in the medium-
energy (∼10–100 TeV) range and for testing neutrino
emission from NGC 1068 and other AGN.
We use a notation with Qx ¼ Q × 10x in CGS units.
Phenomenological prescription of AGN disk coronae.—

We begin by providing a phenomenological disk-corona
model based on the existing data. Multiwavelength SEDs
of Seyfert galaxies have been extensively studied, consist-
ing of several components; radio emission (see Ref. [60]),
infrared emission from a dust torus [61], optical and
ultraviolet components from an accretion disk [62], and
x rays from a corona [33]. The latter two components are
relevant for this work.
The “blue” bump, which has been seen in many AGN, is

attributed to multitemperature blackbody emission from a
geometrically thin, optically thick disk [63]. The averaged
SEDs are provided in Ref. [64] as a function of the
Eddington ratio, λEdd ¼ Lbol=LEdd, where Lbol and LEdd ≈
1.26 × 1045 erg s−1ðM=107 M⊙Þ are bolometric and
Eddington luminosities, respectively, and M is the
SMBH mass. The disk component is expected to have a
cutoff in the ultraviolet range. Hot thermal electrons in a
corona, with an electron temperature of Te ∼ 109 K,
energize the disk photons by Compton upscattering. The
consequent x-ray spectrum can be described by a power
law with an exponential cutoff, in which the photon index
(ΓX) and the cutoff energy (εX;cut) can also be estimated
from λEdd [31,65]. Observations have revealed the relation-
ship between the x-ray luminosity LX and Lbol [66] [where
one typically sees LX ∼ ð0.01 − 0.1ÞLbol], by which the
disk-corona SEDs can be modeled as a function of LX and
M. In this work, we consider contributions from AGN with
the typical SMBH mass for a given LX, using M ≈ 2.0 ×
107 M⊙ðLX=1.16 × 1043 erg s−1Þ0.746 [67]. The resulting
disk-corona SED templates in our model are shown in

Fig. 2 (see Supplemental Material [68] for details), which
enables us to quantitatively evaluate CR, neutrino and
cascade gamma-ray emission.
Next we estimate the nucleon density np and coronal

magnetic field strength B. Let us consider a corona with
the radius R≡RRS and the scale height H, where R is
the normalized coronal radius and RS ¼ 2GM=c2 is the
Schwarzschild radius. Then the nucleon density is
expressed by np ≈ τT=ðσTHÞ, where τT is the Thomson
optical depth that is typically ∼0.1–1. The standard
accretion theory [69,70] gives the coronal scale height
H≈ðCs=VKÞRRS¼RRS=

ffiffiffi
3

p
, whereCs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBTp=mp

p
¼

c=
ffiffiffiffiffiffiffi
6R

p
is the sound velocity, and VK ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GM=R

p
¼

c=
ffiffiffiffiffiffiffi
2R

p
is the Keplerian velocity. For an optically thin

corona, the electron temperature is estimated by
Te ≈ εX;cut=ð2kBÞ, and τT is empirically determined from
ΓX and kBTe [31]. We expect that thermal protons are at
the virial temperature Tp ¼ GMmp=ð3RRSkBÞ ¼ mpc2=
ð6RkBÞ, implying that the corona may be characterized by
two temperatures, i.e.,Tp > Te [71,72]. Finally, themagnetic
field is given by B ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πnpkBTp=β

p
with plasma beta (β).

Many physical quantities (including the SEDs) can be
estimated observationally and empirically. Thus, for a given
LX, parameters characterizing the corona (R, β, α) are
remaining. They are also constrained in a certain range by
observations [73,74] and numerical simulations [45,47].
For example, recent MHD simulations show that β in the
coronae can be as low as 0.1–10 (e.g., Refs. [41,46]). We
assume β ≲ 1–3 and α ¼ 0.1 for the viscosity parameter
[63], and adopt R ¼ 30.
Stochastic proton acceleration in coronae.—Standard

AGN coronae are magnetized and turbulent, in which it is
natural that protons are stochastically accelerated via
plasma turbulence or magnetic reconnections. In this work,
we solve the known Fokker-Planck equation that can
describe the second order Fermi acceleration process

FIG. 1. Schematic picture of the AGN disk-corona scenario.
Protons are accelerated by plasma turbulence generated in the
coronae, and produce high-energy neutrinos and cascaded
gamma rays via interactions with matter and radiation.

FIG. 2. Disk-corona SEDs used in this work, for LX ¼ 1042,
1043, 1044, 1045, and 1046 erg s−1 (from bottom to top). See text
for details.
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turbulence. We compute steady state CR spectra by solv-
ing the following Fokker-Planck equation (e.g., [75–78]),

∂Fp

∂t
=

1

ε2p

∂

∂εp

(

ε2pDεp
∂Fp

∂εp
+

ε3p
tp−cool

Fp

)

− Fp

tesc
+ Ḟp,inj,

(1)
where Fp is the CR distribution function, Dεp ≈ ε2p/tacc
is the diffusion coefficient in energy space, t−1

p−cool = t−1
pp +

t−1
pγ +t−1

BH+t−1
p−syn is the total cooling rate, t

−1
esc = t−1

fall+t−1
diff

is the escape rate, and Ḟp,inj is the injection function
(see Appendix [79]). The stochastic acceleration time is
given by tacc ≈ η(c/VA)

2(R/c)(εp/eBR)2−q, where VA

is the Alfvén velocity and η is the inverse of the turbu-
lence strength [80, 81]. We adopt q = 5/3, which is con-
sistent with the recent MHD simulations [56], together
with η = 10. Because the dissipation rate in the coronae
is expected to be proportional to LX , we assume that the
injection function linearly scales as LX . To explain the
ENB, the CR pressure required for LX = 1044 erg s−1

turns out to be ∼ 1% of the thermal pressure, which is
reasonable. We plot εpLεp ≡ 4π(ε4p/c

3)FpV(t−1
esc+t−1

p−cool)
in Fig. 2, where V is the volume.
While the CRs are accelerated, they interact with

matter and radiation modeled in the previous section,
and produce secondary particles. Following Ref. [82, 83],
we solve the kinetic equations taking into account elec-
tromagnetic cascades. In this work, secondary injections
by the Bethe-Heitler and pγ processes are approx-
imately treated as ε2e(dṄ

BH
e /dεe)|εe=(me/mp)εp ≈

t−1
BHε

2
p(dNCR/dεp), ε2e(dṄ

pγ
e /dεe)|εe=0.05εp ≈

(1/3)ε2ν(dṄ
pγ
ν /dεν)|εν=0.05εp ≈ (1/8)t−1

pγ ε
2
p(dNCR/dεp),

and ε2γ(dṄ
pγ
γ /dεγ)|εγ=0.1εp ≈ (1/2)t−1

pγ ε
2
p(dNCR/dεp).

The resulting cascade spectra are broad, being deter-
mined by synchrotron and inverse Compton emission.
In general, stochastic acceleration models naturally

predict reacceleration of secondary pairs populated by
cascades [84]. The critical energy of the pairs, εe,cl, is
consistently determined by the balance between the ac-
celeration time tacc and the electron cooling time te−cool.
We find that whether the secondary reacceleration oc-
curs or not is rather sensitive to B and tacc. For ex-
ample, with β = 3 and q = 1.5, the reaccelerated pairs
can upscatter x-ray photons up to ∼ (εe,cl/mec2)

2
εX %

3.4 MeV (εe,cl/30 MeV)2(εX/1 keV), which may form a
gamma-ray tail. However, if εe,cl <∼ 1 MeV (for β = 1
and q = 5/3), reacceleration is negligible, and small-scale
turbulence is more likely to be dissipated at high Tp [85].

IV. NEUTRINO BACKGROUND AND MEV
GAMMA-RAY CONNECTION

We calculate neutrino and gamma-ray spectra for dif-
ferent source luminosities, and obtain the EGB and ENB
through Eq. (31) of Ref. [91]. We use the x-ray luminos-
ity function dρX/dLX , given by Ref. [14], taking into
account a factor of 2 enhancement by Compton thick
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FIG. 3. EGB and ENB spectra in our RQ AGN core model.
The data are taken from Swift-BAT [86] (green), Nagoya bal-
loon [87] (blue), SMM [88] (purple), COMPTEL [89] (gray),
Fermi-LAT [90] (orange), and IceCube [5] for shower (black)
and upgoing muon track (blue shaded) events. A possible
contribution of reaccelerated pairs is indicated (thin solid).

AGNs. Results are shown in Fig. 3. Our RQ AGN core
model can explain the ENB at ∼ 30 TeV energies if the
CR pressure is ∼ 1% of the thermal pressure.
In the vicinity of SMBHs, high-energy neutrinos

are produced by both pp and pγ interactions. The
disk-corona model indicates τT ∼ 1 (see Table 1), which
leads to the effective pp optical depth fpp ≈ tesc/tpp ≈
np(κppσpp)R(c/Vfall) ∼ 2τT (αVK/4000 km s−1)

−1
. Note

that VK is a function ofM (and LX). X-ray photons from
coronae provide target photons for the photomeson pro-
duction, whose effective optical depth [8, 92] is fpγ [εp] ≈
tesc/tpγ ≈ ηpγ σ̂pγR(c/Vfall)nX(εp/ε̃pγ−X)ΓX−1 ∼
0.9LX,44R

−1
15 (αVK/4000 km s−1)

−1
(1 keV/εX)ηpγ(εp/ε̃pγ−X)ΓX−1,

where ηpγ ≈ 2/(1 + ΓX), σ̂pγ ∼ 0.7 × 10−28 cm2

is the attenuation cross section, ε̄∆ ∼ 0.3 GeV,
ε̃pγ−X = 0.5mpc2ε̄∆/εX % 0.14 PeV (εX/1 keV)−1,
and nX ∼ LX/(4πR2cεX) is used. The total meson
production optical depth is given by fmes = fpγ + fpp,
which always exceeds unity in our model.
Importantly, ∼ 10− 100 TeV neutrinos originate from

CRs with ∼ 0.2− 2 PeV. Different from previous studies
explaining the IceCube data [93, 94], disk photons are
irrelevant for the photomeson production because its
threshold energy is ε̃pγ−th % 3.4 PeV (εdisk/10 eV)−1.
However, CRs in the 0.1-1 PeV range should efficiently
interact with disk photons via the Bethe-Heitler pro-
cess because the characteristic energy is ε̃BH−disk =
0.5mpc2ε̄BH/εdisk % 0.47 PeV (εdisk/10 eV)−1, where
ε̄BH ∼ 10(2mec2) ∼ 10 MeV [95, 96]. Approximating the
number of disk photons by ndisk ∼ Lbol/(4πR2cεdisk),
the Bethe-Heitler effective optical depth [97] is
estimated to be fBH ≈ ndiskσ̂BHR(c/Vfall) ∼
20Lbol,45.3R

−1
15 (αVK/4000 km s−1)

−1
(10 eV/εdisk),

SSK + 2020 arXiv: 2005.01934

See also Murase, SSK, Meszaros 2020; SSK et al. 2019, PRD; SSK et al. 2015
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・Consider plasma with turbulent fields
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• In non-linear stage of MRI turbulence,  
turbulence energy is injected in multiple scales 
→ we need high-resolution MHD simulations

• The dominant wave-particle interaction process  
depends on the characteristics of turbulence &  
pitch angle distribution of particles 
→ we need particle simulations in MRI turbulence
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light [19]. We adopted the shearing box boundary condition
established by MHD simulations [20].
For the initial condition, a drifting Maxwellian velocity

distribution function was assumed in the local rotating
frame with angular velocityΩ0ðr0Þ. The drift velocity in the
y direction vyðxÞ was given by vyðxÞ ¼ rΩðrÞ − rΩ0ðr0Þ≃
−qΩ0ðr0Þx, and the radial velocity vx and the vertical
velocity vz were both zero. In order to save CPU time, we
set up the pair plasma, but the linear behavior of the MRI in
the pair plasma was the same as that of ion-electron
plasmas [19]. A nonrelativistic isotropic plasma pressure
with a high plasma β ¼ 8πðpþ þ p−Þ=B2

0 ¼ 1536 was
assumed, where the electron and positron gas pressures
were related to the thermal velocities vt% by
p% ¼ ð3=2Þm%nv2t%. The initial magnetic field was ori-
ented purely vertical to the accretion disk, i.e.,
~B ¼ ð0; 0; B0Þ. The ratio of the cyclotron frequency to
the disk angular velocity was fixed at Ωc%=Ω0 ¼ %10,
where Ωc% ¼ e%B0=m%c. The grid size Δ was set to
23=2ðvt%=Ωp%Þ, where Ωp% ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πne2=m%

p
is the pair

plasma frequency. The Alfvén velocity is defined as
VA ¼ B=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πm%n

p
, so that the plasma β is equal to

3v2t%=V
2
A. The parameters used were ðVA=Ω0Þ=Δ ¼ 25,

ðvt%=Ωc%Þ=Δ ¼ 56.4, VA=c ¼ 6.25 × 10−3. Nx, Ny, and
Nz are the grid sizes in the x, y, and z directions,
respectively, and we assumed Nx ¼ Nz ¼ Nz ¼ 300 in

this Letter. Lx ¼ Ly ¼ Lz ¼ ðNxΔÞ=λ ¼ 1.91 is the physi-
cal size normalized by λ ¼ 2πVA=Ω0. The number of
particles per cell was set to Np=cell ¼ 40.
Figure 1 shows the time evolution of the magnetic field

lines (greenish lines) and the structure of the high-density
regions (sandwiched by the reddish curved planes). Color
contours in the background at Y ¼ 1.91 and X ¼ 1.91
show the angular velocity vy in the local rotating frame. In
the early stage at Torbit ¼ Ω0t=2π ¼ 0.31 in Fig. 1(a), the
magnetic field lines are parallel to the z axis, and the
Keplerian motion or differential motion of vy can be seen as
the color contour at Y ¼ 1.91, where the reddish (bluish)
region corresponds to a positive (negative) toroidal veloc-
ity. As time passes, the vertical magnetic fields start to get
distorted due to the MRI, and they are stretched out in the
toroidal direction because of the Keplerian motion at
Torbit ¼ 6.89 in Fig. 1(b). This stretching motion can
amplify the magnetic field and form two inward- and
outward-flowing streams with a high plasma density and
strong electric current called the channel flow. The reddish
regions sandwiched by two surfaces in Fig. 1(c) show the
high-density channel flow with ρ ≥ hρiþ 2σρ where hρi
and σρ are the average density and standard deviation of
density distribution in the simulation domain, respectively.
The amplification of the magnetic field stretched by the

Keplerian motion may be balanced by the magnetic field

FIG. 1 (color online). Time evolution of the magnetorotational instability. Panels (a) and (b) show the magnetic field lines (greenish
lines) and angular velocities in the background at Y ¼ y=λ ¼ 1.91 and X ¼ x=λ ¼ 1.91 (color contour), and panels (c)–(e) depict the
high-density regions as reddish curved planes. Panels (b) and (c) are at the same time stage. Panel (f): The energy spectra during the MRI
at Torbit ¼ 0.31, 6.89, 7.18, 8.84, and 14.28. The dashed line is a Maxwellian fitting for Torbit ¼ 7.18.
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Magnetic reconnection produce relativistic particles  
 → Higher energy particles interact with larger scale turbulence

PIC in Shearing Box

light [19]. We adopted the shearing box boundary condition
established by MHD simulations [20].
For the initial condition, a drifting Maxwellian velocity

distribution function was assumed in the local rotating
frame with angular velocityΩ0ðr0Þ. The drift velocity in the
y direction vyðxÞ was given by vyðxÞ ¼ rΩðrÞ − rΩ0ðr0Þ≃
−qΩ0ðr0Þx, and the radial velocity vx and the vertical
velocity vz were both zero. In order to save CPU time, we
set up the pair plasma, but the linear behavior of the MRI in
the pair plasma was the same as that of ion-electron
plasmas [19]. A nonrelativistic isotropic plasma pressure
with a high plasma β ¼ 8πðpþ þ p−Þ=B2

0 ¼ 1536 was
assumed, where the electron and positron gas pressures
were related to the thermal velocities vt% by
p% ¼ ð3=2Þm%nv2t%. The initial magnetic field was ori-
ented purely vertical to the accretion disk, i.e.,
~B ¼ ð0; 0; B0Þ. The ratio of the cyclotron frequency to
the disk angular velocity was fixed at Ωc%=Ω0 ¼ %10,
where Ωc% ¼ e%B0=m%c. The grid size Δ was set to
23=2ðvt%=Ωp%Þ, where Ωp% ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πne2=m%

p
is the pair

plasma frequency. The Alfvén velocity is defined as
VA ¼ B=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πm%n

p
, so that the plasma β is equal to

3v2t%=V
2
A. The parameters used were ðVA=Ω0Þ=Δ ¼ 25,

ðvt%=Ωc%Þ=Δ ¼ 56.4, VA=c ¼ 6.25 × 10−3. Nx, Ny, and
Nz are the grid sizes in the x, y, and z directions,
respectively, and we assumed Nx ¼ Nz ¼ Nz ¼ 300 in

this Letter. Lx ¼ Ly ¼ Lz ¼ ðNxΔÞ=λ ¼ 1.91 is the physi-
cal size normalized by λ ¼ 2πVA=Ω0. The number of
particles per cell was set to Np=cell ¼ 40.
Figure 1 shows the time evolution of the magnetic field

lines (greenish lines) and the structure of the high-density
regions (sandwiched by the reddish curved planes). Color
contours in the background at Y ¼ 1.91 and X ¼ 1.91
show the angular velocity vy in the local rotating frame. In
the early stage at Torbit ¼ Ω0t=2π ¼ 0.31 in Fig. 1(a), the
magnetic field lines are parallel to the z axis, and the
Keplerian motion or differential motion of vy can be seen as
the color contour at Y ¼ 1.91, where the reddish (bluish)
region corresponds to a positive (negative) toroidal veloc-
ity. As time passes, the vertical magnetic fields start to get
distorted due to the MRI, and they are stretched out in the
toroidal direction because of the Keplerian motion at
Torbit ¼ 6.89 in Fig. 1(b). This stretching motion can
amplify the magnetic field and form two inward- and
outward-flowing streams with a high plasma density and
strong electric current called the channel flow. The reddish
regions sandwiched by two surfaces in Fig. 1(c) show the
high-density channel flow with ρ ≥ hρiþ 2σρ where hρi
and σρ are the average density and standard deviation of
density distribution in the simulation domain, respectively.
The amplification of the magnetic field stretched by the

Keplerian motion may be balanced by the magnetic field

FIG. 1 (color online). Time evolution of the magnetorotational instability. Panels (a) and (b) show the magnetic field lines (greenish
lines) and angular velocities in the background at Y ¼ y=λ ¼ 1.91 and X ¼ x=λ ¼ 1.91 (color contour), and panels (c)–(e) depict the
high-density regions as reddish curved planes. Panels (b) and (c) are at the same time stage. Panel (f): The energy spectra during the MRI
at Torbit ¼ 0.31, 6.89, 7.18, 8.84, and 14.28. The dashed line is a Maxwellian fitting for Torbit ¼ 7.18.
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Particle-In-Cell Simulations 
with turbulence

Note also that in the 3D case the magnetic energy decays faster
than in the 2D case (compare insets of Figures 3 and 4). We will
show that this leads to a reduced particle acceleration rate at late
times.

3.2. Particle Spectrum

The most interesting outcome of the turbulent cascade is the
generation of a large population of nonthermal particles. This is
shown in Figure 5 (for the 2D setup), where the time evolution
of the particle energy spectrum ( )H �dN d ln 1 is presented
(H � � E mc1 k

2 is the normalized particle kinetic energy).
As a result of turbulent field dissipation, the spectrum shifts to
energies much larger than the initial Maxwellian, which is

shown by the blue line peaking at �H H� _ �1 1 0.6th0 . At
late times, when most of the turbulent energy has decayed, the
spectrum stops evolving (orange and red lines): it peaks at
γ−1∼5 and extends well beyond the peak into a nonthermal
tail of ultrarelativistic particles that can be described by a power
law
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and a sharp cutoff for γ�γc. Here N0 is the normalization of
the power law and p is the power-law index, which is about 2.8
for the simulation results presented in the main panel of
Figure 5 (note that in our figures we plot dN/dln(γ−1) to

Figure 2. 3D plots of different fluid structures in fully developed 3D turbulence (at ct/l=2.7) with σ0=10, δBrms0/B0=1, and L/de0=820 (with l=L/4). The
displayed quantities are (from left to right, top to bottom) the fluctuation magnetic energy density in units of B0

2/8π, the current density Jz along the mean magnetic
field in units of en0c, the bulk dimensionless four-velocity Γβ, and the particle density ratio n/n0. Note that the color bars for Γβ and n/n0 are in logarithmic scale. An
animation showing the current density Jz in different x-y slices can be found at https://doi.org/10.7916/d8-prt9-kn88.
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power-law index p for increasing magnetization σ0 (see also
Zhdankin et al. 2017; Comisso & Sironi 2018) is in analogy
with the results of PIC simulations of relativistic magnetic
reconnection (Guo et al. 2014; Sironi & Spitkovsky 2014;
Werner et al. 2016; Lyutikov et al. 2017; Petropoulou &
Sironi 2018). We will see that magnetic reconnection plays an
important role also in the turbulence scenario considered here.
However, as we show below, its role is confined to the initial
stages of particle acceleration, while the dominant acceleration
process is given by stochastic scattering off turbulent
fluctuations, which determines the slope and the cutoff of the
high-energy power-law tail.

A similar picture holds in 3D, i.e., a generic by-product of
the magnetized turbulence cascade is the production of a large
number of nonthermal particles. Figure 6 shows the evolution
of the particle energy spectrum ( )H �dN d ln 1 starting from
the initial Maxwellian peaked at �H H� _ �1 1 0.6th0 . As
time progresses, the particle energy spectrum shifts to higher
energies and develops a high-energy tail containing a large
fraction of particles. At late times, when most of the turbulent
energy has decayed, the particle energy spectrum stops
evolving (orange and red lines), and it peaks at γ−1∼7. It
extends well beyond the peak into a nonthermal tail of
ultrarelativistic particles that can be described by a power law
with an index p∼2.9 (main panel of Figure 6). As in the 2D
case, the normalization of the power law is close to the peak of
the spectrum, giving a large fraction of nonthermal particles. At
ct/l=12 we find that about 16% of particles have or exceed
twice the energy of the spectral peak, which provides an
indication of the percentage of particles in the nonthermal tail
ζnt.

In order to understand the dependence of the high-energy
power-law slope on the initial magnetization in 3D, we performed
four large-scale 3D simulations with { }T � 5, 10, 20, 400 and
same δBrms0/B0=1, L/de0=820. The power-law index p
decreases for increasing σ0 (see top inset in Figure 6), with
values that are close to the ones from the corresponding 2D
simulations with δBrms0/B0=1 (blue curve from the inset in
Figure 5). Here we also show the scaling of the high-energy cutoff

γc (bottom inset in Figure 6), defined as the Lorentz factor where
the spectrum drops one order of magnitude below the power-law
best fit. The high-energy cutoff γc increases as H Trc 0

1 2

(compare with dashed line in the inset), which is consistent with
the expectation from Equations (9) and (10) for a σ0-independent
domain size L/de0 and fixed δBrms0/B0.
Several astrophysical systems are thought to have δBrms/B0

larger than unity (e.g., E _B B 6rms
2

0
2 in some regions of the

Crab Nebula; Lyutikov et al. 2019). Therefore, we have
performed three additional 2D simulations with initial ratios
δBrms0/B0=1, 2, 4, with fixed initial magnetization σ0=40
and a larger domain size L/de0=3280. Figure 7 shows that the
power law becomes harder with increasing δBrms0/B0, with
p<2 for large initial fluctuations. In this case, both
Equations (8) and (9) should be understood as upper limits
that are subject to energy constraints, as we now discuss. The
starting point of the power-law tail, γst, could be lower than
indicated in Equation (8), if only a minor fraction of the
available energy goes into thermal particles, while most of the
energy goes into the nonthermal tail. Also, while in the case
p>2 one can have from Equation (9) that H l dc as kIde0 →
0, the case 1<p<2 has a lower attainable high-energy cutoff
γc, since the mean energy per particle in the power-law tail has
to be (Sironi & Spitkovsky 2014)
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where χ is the fraction of turbulent magnetic energy converted
into particles belonging to the power-law tail.
We conclude this section with the results of 2D simulations

having different initial plasma temperature θ0. From Figure 8,
we can see that the slope p, the fraction of nonthermal particles,
and the extent of the nonthermal tail γc/γst do not depend on
θ0. Indeed, this plot shows that spectra obtained from
simulations with different θ0 nearly overlap, when shifted by
an amount equal to the initial thermal Lorentz factor γth0. The
role of the initial choice of temperature is only to produce an
energy rescaling, since both γst and γc are proportional to γth0,

Figure 6. Time evolution of the particle spectrum dN/dln(γ−1) for the
simulation in Figure 2. At late times, the spectrum displays a power-law tail
with index ( )H� � � _p d N dlog log 1 2.9. About 16% of the particles
have γ�15 at ct/l=12 (twice the peak of the particle energy spectrum),
which gives an indication of the percentage of nonthermal particles. The inset
shows the power-law index p and the cutoff Lorentz factor γc as a function of
the magnetization σ0. The dashed line indicates the scaling H Trc 0

1 2 expected
for a σ0-independent domain size L/de0=820.

Figure 7. Particle spectra dN/dln(γ−1) at late times for simulations with
magnetization σ0=40, system size L/de0=3280 (with l=L/8), and
different values of initial fluctuations { }E �B B 1, 2, 4rms0 0 . For the case
with larger initial fluctuations, the late-time particle spectrum displays a power-
law tail with index ( )H� � � _p d N dlog log 1 1.9, and about 31% of the
particles have γ�25 at ct/l=12 (twice the peak of the particle energy
spectrum at that time), which gives an indication of the percentage of
nonthermal particles.
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magnetic field. The peak of the pdf for the particles at injection is
at a lower value of ∣ ∣J Jz p z, ,rms than in 2D, and in general there are
weaker ∣ ∣J Jz p z, ,rms wings for both the pdf of all particles and the
pdf of particles experiencing injection. This can be attributed to
the lower levels of intermittency that characterize 3D magnetized
turbulence with respect to its 2D counterpart (e.g., Biskamp 2003).
Nevertheless, about 80% of the particles are injected in regions
with ∣ ∣ .J J2z p z, ,rms. On the other hand, only approximately 11%
of the entire population of particles (at the representative time
ct/l=2.5) reside at ∣ ∣ .J J2z p z, ,rms. Therefore, also in 3D, special
locations of high electric current density are associated with
particle injection.

The spatial locations with ∣ ∣ .J J2z z,rms are associated with
current ribbons that are predominantly elongated along the
mean magnetic field B0. In Figure 12, we show the morphology
of these regions for two representative planes perpendicular to
B0 (taken at ct/l=2.5). These regions are sheet-like structures
with a variety of length scales. We can see that the majority of
the particles undergoing injection, whose location is shown by
the red circles, resides at these current sheets. A large fraction
of these current sheets are active reconnection layers,
fragmenting into plasmoids. A typical example of such
reconnecting current sheets is shown in Figure 13. We can

see four flux ropes (3D plasmoids) that are formed within the
current sheet (and elongated in the direction of the mean
magnetic field), which is the typical signature of fast plasmoid-
mediated reconnection. We will see in the next subsection that
current sheets undergoing fast reconnection are important for
having efficient particle injection, as they are capable to
“process” a significant fraction of particles (from the thermal
pool) during their lifetime in the turbulent plasma.

Figure 11. Relation between particle injection and electric current density from
the 3D simulation with σ0=10, δBrms0/B0=1, and L/de0=820. Top panel:
time evolution of the Lorentz factor for 10 representative particles selected to
end up in different energy bins at ct/l=12 (matching the different colors in
the color bar on the right). Bottom panel: pdf’s of ∣ ∣J Jz p z, ,rms experienced by the
high-energy particles at their tinj (red circles) and by all our tracked particles at
ct/l=2.5 (blue diamonds). About 80% of the high-energy particles are
injected at regions with ∣ ∣ .J J2z p z, ,rms.

Figure 12. Spatial correlation between particle injection and reconnecting
current sheets for the same 3D simulation as in Figure 11. In black, we show
regions of space with strong current density ∣ ∣ � §.J J2z z

2 1 2 at ct/l=2.5, for
two representative planes of the 3D domain, taken at z/l=0.6 (top panel) and
z/l=3.4 (bottom panel). The large-scale mean magnetic field B0 is in the out-
of-plane direction. The red circles indicate the positions of particles undergoing
injection around this time.
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light [19]. We adopted the shearing box boundary condition
established by MHD simulations [20].
For the initial condition, a drifting Maxwellian velocity

distribution function was assumed in the local rotating
frame with angular velocityΩ0ðr0Þ. The drift velocity in the
y direction vyðxÞ was given by vyðxÞ ¼ rΩðrÞ − rΩ0ðr0Þ≃
−qΩ0ðr0Þx, and the radial velocity vx and the vertical
velocity vz were both zero. In order to save CPU time, we
set up the pair plasma, but the linear behavior of the MRI in
the pair plasma was the same as that of ion-electron
plasmas [19]. A nonrelativistic isotropic plasma pressure
with a high plasma β ¼ 8πðpþ þ p−Þ=B2

0 ¼ 1536 was
assumed, where the electron and positron gas pressures
were related to the thermal velocities vt% by
p% ¼ ð3=2Þm%nv2t%. The initial magnetic field was ori-
ented purely vertical to the accretion disk, i.e.,
~B ¼ ð0; 0; B0Þ. The ratio of the cyclotron frequency to
the disk angular velocity was fixed at Ωc%=Ω0 ¼ %10,
where Ωc% ¼ e%B0=m%c. The grid size Δ was set to
23=2ðvt%=Ωp%Þ, where Ωp% ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πne2=m%

p
is the pair

plasma frequency. The Alfvén velocity is defined as
VA ¼ B=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πm%n

p
, so that the plasma β is equal to

3v2t%=V
2
A. The parameters used were ðVA=Ω0Þ=Δ ¼ 25,

ðvt%=Ωc%Þ=Δ ¼ 56.4, VA=c ¼ 6.25 × 10−3. Nx, Ny, and
Nz are the grid sizes in the x, y, and z directions,
respectively, and we assumed Nx ¼ Nz ¼ Nz ¼ 300 in

this Letter. Lx ¼ Ly ¼ Lz ¼ ðNxΔÞ=λ ¼ 1.91 is the physi-
cal size normalized by λ ¼ 2πVA=Ω0. The number of
particles per cell was set to Np=cell ¼ 40.
Figure 1 shows the time evolution of the magnetic field

lines (greenish lines) and the structure of the high-density
regions (sandwiched by the reddish curved planes). Color
contours in the background at Y ¼ 1.91 and X ¼ 1.91
show the angular velocity vy in the local rotating frame. In
the early stage at Torbit ¼ Ω0t=2π ¼ 0.31 in Fig. 1(a), the
magnetic field lines are parallel to the z axis, and the
Keplerian motion or differential motion of vy can be seen as
the color contour at Y ¼ 1.91, where the reddish (bluish)
region corresponds to a positive (negative) toroidal veloc-
ity. As time passes, the vertical magnetic fields start to get
distorted due to the MRI, and they are stretched out in the
toroidal direction because of the Keplerian motion at
Torbit ¼ 6.89 in Fig. 1(b). This stretching motion can
amplify the magnetic field and form two inward- and
outward-flowing streams with a high plasma density and
strong electric current called the channel flow. The reddish
regions sandwiched by two surfaces in Fig. 1(c) show the
high-density channel flow with ρ ≥ hρiþ 2σρ where hρi
and σρ are the average density and standard deviation of
density distribution in the simulation domain, respectively.
The amplification of the magnetic field stretched by the

Keplerian motion may be balanced by the magnetic field

FIG. 1 (color online). Time evolution of the magnetorotational instability. Panels (a) and (b) show the magnetic field lines (greenish
lines) and angular velocities in the background at Y ¼ y=λ ¼ 1.91 and X ¼ x=λ ¼ 1.91 (color contour), and panels (c)–(e) depict the
high-density regions as reddish curved planes. Panels (b) and (c) are at the same time stage. Panel (f): The energy spectra during the MRI
at Torbit ¼ 0.31, 6.89, 7.18, 8.84, and 14.28. The dashed line is a Maxwellian fitting for Torbit ¼ 7.18.
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light [19]. We adopted the shearing box boundary condition
established by MHD simulations [20].
For the initial condition, a drifting Maxwellian velocity

distribution function was assumed in the local rotating
frame with angular velocityΩ0ðr0Þ. The drift velocity in the
y direction vyðxÞ was given by vyðxÞ ¼ rΩðrÞ − rΩ0ðr0Þ≃
−qΩ0ðr0Þx, and the radial velocity vx and the vertical
velocity vz were both zero. In order to save CPU time, we
set up the pair plasma, but the linear behavior of the MRI in
the pair plasma was the same as that of ion-electron
plasmas [19]. A nonrelativistic isotropic plasma pressure
with a high plasma β ¼ 8πðpþ þ p−Þ=B2

0 ¼ 1536 was
assumed, where the electron and positron gas pressures
were related to the thermal velocities vt% by
p% ¼ ð3=2Þm%nv2t%. The initial magnetic field was ori-
ented purely vertical to the accretion disk, i.e.,
~B ¼ ð0; 0; B0Þ. The ratio of the cyclotron frequency to
the disk angular velocity was fixed at Ωc%=Ω0 ¼ %10,
where Ωc% ¼ e%B0=m%c. The grid size Δ was set to
23=2ðvt%=Ωp%Þ, where Ωp% ¼
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, so that the plasma β is equal to
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A. The parameters used were ðVA=Ω0Þ=Δ ¼ 25,

ðvt%=Ωc%Þ=Δ ¼ 56.4, VA=c ¼ 6.25 × 10−3. Nx, Ny, and
Nz are the grid sizes in the x, y, and z directions,
respectively, and we assumed Nx ¼ Nz ¼ Nz ¼ 300 in

this Letter. Lx ¼ Ly ¼ Lz ¼ ðNxΔÞ=λ ¼ 1.91 is the physi-
cal size normalized by λ ¼ 2πVA=Ω0. The number of
particles per cell was set to Np=cell ¼ 40.
Figure 1 shows the time evolution of the magnetic field

lines (greenish lines) and the structure of the high-density
regions (sandwiched by the reddish curved planes). Color
contours in the background at Y ¼ 1.91 and X ¼ 1.91
show the angular velocity vy in the local rotating frame. In
the early stage at Torbit ¼ Ω0t=2π ¼ 0.31 in Fig. 1(a), the
magnetic field lines are parallel to the z axis, and the
Keplerian motion or differential motion of vy can be seen as
the color contour at Y ¼ 1.91, where the reddish (bluish)
region corresponds to a positive (negative) toroidal veloc-
ity. As time passes, the vertical magnetic fields start to get
distorted due to the MRI, and they are stretched out in the
toroidal direction because of the Keplerian motion at
Torbit ¼ 6.89 in Fig. 1(b). This stretching motion can
amplify the magnetic field and form two inward- and
outward-flowing streams with a high plasma density and
strong electric current called the channel flow. The reddish
regions sandwiched by two surfaces in Fig. 1(c) show the
high-density channel flow with ρ ≥ hρiþ 2σρ where hρi
and σρ are the average density and standard deviation of
density distribution in the simulation domain, respectively.
The amplification of the magnetic field stretched by the

Keplerian motion may be balanced by the magnetic field

FIG. 1 (color online). Time evolution of the magnetorotational instability. Panels (a) and (b) show the magnetic field lines (greenish
lines) and angular velocities in the background at Y ¼ y=λ ¼ 1.91 and X ¼ x=λ ¼ 1.91 (color contour), and panels (c)–(e) depict the
high-density regions as reddish curved planes. Panels (b) and (c) are at the same time stage. Panel (f): The energy spectra during the MRI
at Torbit ¼ 0.31, 6.89, 7.18, 8.84, and 14.28. The dashed line is a Maxwellian fitting for Torbit ¼ 7.18.
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Particle-In-Cell Simulations 
with turbulence

Note also that in the 3D case the magnetic energy decays faster
than in the 2D case (compare insets of Figures 3 and 4). We will
show that this leads to a reduced particle acceleration rate at late
times.

3.2. Particle Spectrum

The most interesting outcome of the turbulent cascade is the
generation of a large population of nonthermal particles. This is
shown in Figure 5 (for the 2D setup), where the time evolution
of the particle energy spectrum ( )H �dN d ln 1 is presented
(H � � E mc1 k

2 is the normalized particle kinetic energy).
As a result of turbulent field dissipation, the spectrum shifts to
energies much larger than the initial Maxwellian, which is

shown by the blue line peaking at �H H� _ �1 1 0.6th0 . At
late times, when most of the turbulent energy has decayed, the
spectrum stops evolving (orange and red lines): it peaks at
γ−1∼5 and extends well beyond the peak into a nonthermal
tail of ultrarelativistic particles that can be described by a power
law
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and a sharp cutoff for γ�γc. Here N0 is the normalization of
the power law and p is the power-law index, which is about 2.8
for the simulation results presented in the main panel of
Figure 5 (note that in our figures we plot dN/dln(γ−1) to

Figure 2. 3D plots of different fluid structures in fully developed 3D turbulence (at ct/l=2.7) with σ0=10, δBrms0/B0=1, and L/de0=820 (with l=L/4). The
displayed quantities are (from left to right, top to bottom) the fluctuation magnetic energy density in units of B0

2/8π, the current density Jz along the mean magnetic
field in units of en0c, the bulk dimensionless four-velocity Γβ, and the particle density ratio n/n0. Note that the color bars for Γβ and n/n0 are in logarithmic scale. An
animation showing the current density Jz in different x-y slices can be found at https://doi.org/10.7916/d8-prt9-kn88.
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power-law index p for increasing magnetization σ0 (see also
Zhdankin et al. 2017; Comisso & Sironi 2018) is in analogy
with the results of PIC simulations of relativistic magnetic
reconnection (Guo et al. 2014; Sironi & Spitkovsky 2014;
Werner et al. 2016; Lyutikov et al. 2017; Petropoulou &
Sironi 2018). We will see that magnetic reconnection plays an
important role also in the turbulence scenario considered here.
However, as we show below, its role is confined to the initial
stages of particle acceleration, while the dominant acceleration
process is given by stochastic scattering off turbulent
fluctuations, which determines the slope and the cutoff of the
high-energy power-law tail.

A similar picture holds in 3D, i.e., a generic by-product of
the magnetized turbulence cascade is the production of a large
number of nonthermal particles. Figure 6 shows the evolution
of the particle energy spectrum ( )H �dN d ln 1 starting from
the initial Maxwellian peaked at �H H� _ �1 1 0.6th0 . As
time progresses, the particle energy spectrum shifts to higher
energies and develops a high-energy tail containing a large
fraction of particles. At late times, when most of the turbulent
energy has decayed, the particle energy spectrum stops
evolving (orange and red lines), and it peaks at γ−1∼7. It
extends well beyond the peak into a nonthermal tail of
ultrarelativistic particles that can be described by a power law
with an index p∼2.9 (main panel of Figure 6). As in the 2D
case, the normalization of the power law is close to the peak of
the spectrum, giving a large fraction of nonthermal particles. At
ct/l=12 we find that about 16% of particles have or exceed
twice the energy of the spectral peak, which provides an
indication of the percentage of particles in the nonthermal tail
ζnt.

In order to understand the dependence of the high-energy
power-law slope on the initial magnetization in 3D, we performed
four large-scale 3D simulations with { }T � 5, 10, 20, 400 and
same δBrms0/B0=1, L/de0=820. The power-law index p
decreases for increasing σ0 (see top inset in Figure 6), with
values that are close to the ones from the corresponding 2D
simulations with δBrms0/B0=1 (blue curve from the inset in
Figure 5). Here we also show the scaling of the high-energy cutoff

γc (bottom inset in Figure 6), defined as the Lorentz factor where
the spectrum drops one order of magnitude below the power-law
best fit. The high-energy cutoff γc increases as H Trc 0

1 2

(compare with dashed line in the inset), which is consistent with
the expectation from Equations (9) and (10) for a σ0-independent
domain size L/de0 and fixed δBrms0/B0.
Several astrophysical systems are thought to have δBrms/B0

larger than unity (e.g., E _B B 6rms
2

0
2 in some regions of the

Crab Nebula; Lyutikov et al. 2019). Therefore, we have
performed three additional 2D simulations with initial ratios
δBrms0/B0=1, 2, 4, with fixed initial magnetization σ0=40
and a larger domain size L/de0=3280. Figure 7 shows that the
power law becomes harder with increasing δBrms0/B0, with
p<2 for large initial fluctuations. In this case, both
Equations (8) and (9) should be understood as upper limits
that are subject to energy constraints, as we now discuss. The
starting point of the power-law tail, γst, could be lower than
indicated in Equation (8), if only a minor fraction of the
available energy goes into thermal particles, while most of the
energy goes into the nonthermal tail. Also, while in the case
p>2 one can have from Equation (9) that H l dc as kIde0 →
0, the case 1<p<2 has a lower attainable high-energy cutoff
γc, since the mean energy per particle in the power-law tail has
to be (Sironi & Spitkovsky 2014)
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where χ is the fraction of turbulent magnetic energy converted
into particles belonging to the power-law tail.
We conclude this section with the results of 2D simulations

having different initial plasma temperature θ0. From Figure 8,
we can see that the slope p, the fraction of nonthermal particles,
and the extent of the nonthermal tail γc/γst do not depend on
θ0. Indeed, this plot shows that spectra obtained from
simulations with different θ0 nearly overlap, when shifted by
an amount equal to the initial thermal Lorentz factor γth0. The
role of the initial choice of temperature is only to produce an
energy rescaling, since both γst and γc are proportional to γth0,

Figure 6. Time evolution of the particle spectrum dN/dln(γ−1) for the
simulation in Figure 2. At late times, the spectrum displays a power-law tail
with index ( )H� � � _p d N dlog log 1 2.9. About 16% of the particles
have γ�15 at ct/l=12 (twice the peak of the particle energy spectrum),
which gives an indication of the percentage of nonthermal particles. The inset
shows the power-law index p and the cutoff Lorentz factor γc as a function of
the magnetization σ0. The dashed line indicates the scaling H Trc 0

1 2 expected
for a σ0-independent domain size L/de0=820.

Figure 7. Particle spectra dN/dln(γ−1) at late times for simulations with
magnetization σ0=40, system size L/de0=3280 (with l=L/8), and
different values of initial fluctuations { }E �B B 1, 2, 4rms0 0 . For the case
with larger initial fluctuations, the late-time particle spectrum displays a power-
law tail with index ( )H� � � _p d N dlog log 1 1.9, and about 31% of the
particles have γ�25 at ct/l=12 (twice the peak of the particle energy
spectrum at that time), which gives an indication of the percentage of
nonthermal particles.
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magnetic field. The peak of the pdf for the particles at injection is
at a lower value of ∣ ∣J Jz p z, ,rms than in 2D, and in general there are
weaker ∣ ∣J Jz p z, ,rms wings for both the pdf of all particles and the
pdf of particles experiencing injection. This can be attributed to
the lower levels of intermittency that characterize 3D magnetized
turbulence with respect to its 2D counterpart (e.g., Biskamp 2003).
Nevertheless, about 80% of the particles are injected in regions
with ∣ ∣ .J J2z p z, ,rms. On the other hand, only approximately 11%
of the entire population of particles (at the representative time
ct/l=2.5) reside at ∣ ∣ .J J2z p z, ,rms. Therefore, also in 3D, special
locations of high electric current density are associated with
particle injection.

The spatial locations with ∣ ∣ .J J2z z,rms are associated with
current ribbons that are predominantly elongated along the
mean magnetic field B0. In Figure 12, we show the morphology
of these regions for two representative planes perpendicular to
B0 (taken at ct/l=2.5). These regions are sheet-like structures
with a variety of length scales. We can see that the majority of
the particles undergoing injection, whose location is shown by
the red circles, resides at these current sheets. A large fraction
of these current sheets are active reconnection layers,
fragmenting into plasmoids. A typical example of such
reconnecting current sheets is shown in Figure 13. We can

see four flux ropes (3D plasmoids) that are formed within the
current sheet (and elongated in the direction of the mean
magnetic field), which is the typical signature of fast plasmoid-
mediated reconnection. We will see in the next subsection that
current sheets undergoing fast reconnection are important for
having efficient particle injection, as they are capable to
“process” a significant fraction of particles (from the thermal
pool) during their lifetime in the turbulent plasma.

Figure 11. Relation between particle injection and electric current density from
the 3D simulation with σ0=10, δBrms0/B0=1, and L/de0=820. Top panel:
time evolution of the Lorentz factor for 10 representative particles selected to
end up in different energy bins at ct/l=12 (matching the different colors in
the color bar on the right). Bottom panel: pdf’s of ∣ ∣J Jz p z, ,rms experienced by the
high-energy particles at their tinj (red circles) and by all our tracked particles at
ct/l=2.5 (blue diamonds). About 80% of the high-energy particles are
injected at regions with ∣ ∣ .J J2z p z, ,rms.

Figure 12. Spatial correlation between particle injection and reconnecting
current sheets for the same 3D simulation as in Figure 11. In black, we show
regions of space with strong current density ∣ ∣ � §.J J2z z

2 1 2 at ct/l=2.5, for
two representative planes of the 3D domain, taken at z/l=0.6 (top panel) and
z/l=3.4 (bottom panel). The large-scale mean magnetic field B0 is in the out-
of-plane direction. The red circles indicate the positions of particles undergoing
injection around this time.
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where ε is the particle energy. Such a power-law distribution is
expected if CRs are produced by first-order Fermi mechanisms,
such as the diffusive shock acceleration (Bell 1978; Blandford &
Ostriker 1978). However, it is unclear whether such a single
power-law distribution is achieved, because the accretion flows are
unlikely to have a strong shock. Although shocked accretion flows
may be formed in hot accretion flows (e.g. Le & Becker 2005;
Becker, Das & Le 2008), we do not observe such structures in
the multidimensional global hydrodynamic simulations (Yuan &
Narayan 2014). In the accretion flows without shocks, CRs are
expected to be produced by magnetic reconnection (e.g. Hoshino
2012) and/or stochastic acceleration by turbulence (e.g. Lynn et al.
2014). Inside accretion flows, magnetorotational instability (MRI)
generates strong turbulence and induces magnetic reconnection
(e.g. Balbus & Hawley 1991, 1998; Sano & Inutsuka 2001).
Recent Particle-In-Cell (PIC) simulations show that when MRI
takes place in collisionless plasma, magnetic reconnection produces
non-thermal particles (Riquelme et al. 2012; Hoshino 2013, 2015;
Kunz, Stone & Quataert 2016). These non-thermal particles can
further be accelerated stochastically through interactions with larger
scale eddies. However, current PIC simulations cannot track such
a late-time phase because of the computational limitation, although
recent developments of computational resources and techniques
partially enable us to simulate particle acceleration in turbulence
(Comisso & Sironi 2018; Zhdankin et al. 2018). The stochastic
particle acceleration by magnetohydrodynamic (MHD) turbulence
is often modeled as a diffusion phenomenon in energy space (e.g.
Blandford & Eichler 1987), which has been applied to various
astrophysical objects such as galaxy clusters (e.g. Blasi 2000;
Brunetti & Lazarian 2007; Fujita, Akamatsu & Kimura 2016),
gamma-ray bursts (e.g. Asano & Terasawa 2009; Murase et al.
2012a), radio-lobes of radio galaxies (e.g. Hardcastle et al. 2009;
O’Sullivan, Reville & Taylor 2009), and blazars (e.g. Katarzyński
et al. 2006; Asano et al. 2014). Engaging this stochastic acceleration
model to the hot accretion flow at the Galactic center, we can
explain flares of Sgr A∗ (Liu, Petrosian & Melia 2004), TeV gamma-
rays from the Galactic Center (Liu et al. 2006; Fujita, Kimura &
Murase 2015), and perhaps PeV CRs observed at the Earth (Fujita,
Murase & Kimura 2017). In addition, Kimura et al. (2015) showed
that using the acceleration model, hot accretion flows in LLAGNs
can reproduce the high-energy neutrinos detected by IceCube. Note
that the model leads to a very hard spectrum, −1 ≤ s ≤ 0, compared
to the shock acceleration.

In the stochastic acceleration model, the diffusion coefficient in
energy space is approximated by a power-law function of energy, Dε

≈ D0(ε/ε0)q. The values of q and D0 depend on the power spectrum
of the MHD turbulence and interaction processes between CRs
and MHD waves (e.g. Cho & Lazarian 2006). For example, gyro
resonant scattering by Alfven modes makes the value of q equal
to the slope of the power spectrum of the turbulence (e.g. Dermer,
Miller & Li 1996; Becker, Le & Dermer 2006; Stawarz & Petrosian
2008). The turbulent strength, (δB/B0)2, is related to D0, and analytic
theories used in the works above assume that the turbulent strength is
smaller than unity. However, this condition is likely to be violated in
weakly magnetized accretion flows according to MHD simulations
(e.g. Stone & Pringle 2001; McKinney 2006; Suzuki, Takahashi &
Kudoh 2014). Applicability of the analytic models to the strong
turbulence has been investigated using test particle simulations, but
it is still controversial. The turbulence is usually provided by a
superposition of plane waves in the Fourier space (e.g. O’Sullivan
et al. 2009; Fatuzzo & Melia 2014; Teraki, Ito & Nagataki 2015),
or driven by some algorithms (e.g. Dmitruk et al. 2003; Lynn et al.

2014; Teaca et al. 2014). These studies are useful to investigate
features of the stochastic acceleration owing to their controllablity
of the turbulence. However, each astronomical object has a different
driving mechanism of turbulence, which may lead to a different
behaviour of the CR particles (see Roh, Inutsuka & Inoue 2016 for
supernova remnants and Porth et al. 2016 for pulsar wind nebulae).

Kimura et al. (2016) performed test-particle simulations in the
MRI turbulence, using the shearing box approximation (Hawley,
Gammie & Balbus 1995). However, the shearing box approxi-
mation has a few inconsistencies with the hot accretion flows,
such as geometrical thickness and non-negligible advection cooling
(Narayan & Yi 1994). More importantly, escape of CRs cannot be
implemented in a realistic manner. In this paper, we present results of
global simulations, which enables us to investigate behaviours of the
high-energy CRs more consistently. We perform MHD simulations
to model hot and turbulent accretion flows, and solve orbits of test
particles using the snapshot data of the MHD simulations. This
paper is organized as follows. First, we describe the global MHD
simulations dedicated to the hot accretion flows in Section 2. Then,
we show the results of the test-particle simulations in Section 3.
We discuss implications and future directions in Section 4 and
summarize our results in Section 5.

2 PRO P E RT I E S O F TH E M R I TU R BU L E N C E

2.1 Set-up for MHD simulations

We use the Athena++ code1 to solve the set of the ideal MHD
equations (Stone et al. 2008, in preparation):

∂ρ

∂T
+ ∇ · (ρV ) = 0, (1)

∂(ρV )
∂T

+ ∇ ·
(

ρV V − B B
4π

+ P ∗I
)

= −ρ∇&, (2)

∂Etot

∂T
+ ∇ ·

[(
Etot + P ∗) V − B · V

4π
B
]

= −ρV · ∇&, (3)

∂ B
∂T

− ∇ × (V × B) = 0, (4)

where T is the time for the MHD calculations, ρ is the density, V
is the velocity of the MHD fluid, B is the magnetic field, P∗ = P
+ B2/(8π ) is the total pressure, P is the gas pressure, I is the unit
tensor, and & is the gravitational potential. The total energy of the
fluid is written as

Etot = Eth + 1
2
ρV 2 + B2

8π
, (5)

and we use the equation of state for ideal gas, P = (γ s − 1)Eth

(γ s = 5/3 is the specific heat ratio and Eth is the thermal energy).
We solve the MHD equations in the spherical polar coordinate,
(R, θ , φ), using the second-order van Leer integrator, the second-
order piecewise linear reconstruction, the Harten–Lax–van Leer
Discontinuities (HLLD) approximate Riemann solver (Miyoshi &
Kusano 2005), and the constrained transport scheme. We use the
Newtonian gravitational potential, & = −GM/R, where G is the
gravitational constant and M is the mass of the central black hole
(BH). With this potential, we do not have to specify the values of the

1https://princetonuniversity.github.io/athena/
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field in Fig. 5. We can see that all the data sets have similar values for
a larger scale of m ! 10. The spectra for Br and Bθ are mPm ∝ m,
while those for Bφ are roughly mPm ∝ m1/2. For a smaller scale of
m " Nφ /10, the spectra decrease with m very rapidly for all the data
sets because of the numerical dissipation. The power spectra peak
at intermediate scale of m ∼ 10 − 20, depending on the resolution
and component. These features are consistent with the previous
calculations (Sorathia et al. 2012; Suzuki & Inutsuka 2014).

The fastest growing mode of the MRI is approximated to be LMRI

∼ 2πVA/$, where $ is the angular velocity. Saturation of MRI
turbulence is expected to be controlled either by the large-scale
magnetic reconnection (Sano & Inutsuka 2001; Sano et al. 2004)
or by the growth of the parasitic instabilities of Kelvin–Helmholtz
modes (Goodman & Xu 1994; Pessah 2010). These phenomena
occur inside the disc, where the largest scale is the scale height,
H ≈ Cs/$. Hence, the characteristic scale of the saturated MRI
turbulence should be the smaller one of the two, Ltur ≈ min(LMRI,
H). From Fig. 2, we roughly see VA ∼ Vφ,bulk/7 and Cs ∼ Vφ,bulk/2,
leading to LMRI ≈ 2πR/7 > H ≈ R/2. Hence, Ltur = H ≈ R/2. This
scale corresponds to m ∼ 13, which is consistent with the peaks of
the power spectra.

For the intermediate scale, we narrowly see that the spectra
gradually decrease with m. Theoretically, fully developed Alfven
turbulence results in Pk ∝ k

−5/3
⊥ and Pk ∝ k−2

‖ , where Pk is the
power spectrum, k⊥ and k! are the perpendicular and parallel wave
numbers to the background magnetic field, respectively (Goldre-
ich & Sridhar 1995). Such an anisotropic cascade takes place with
respect to the local magnetic field. In strong turbulence where the
large-scale magnetic field is significantly tilted, the direction of the
local magnetic field is not aligned. Then, the global Fourier analysis
would smear out the local anisotropy, resulting in Pk ∝ k−5/3 in all
the directions (Cho & Vishniac 2000). However, we cannot clearly
see the power-law shape in the power spectra of our simulations,
due to the insufficient dynamic range. Simulations with a higher
resolution and a higher-order reconstruction scheme are necessary
to determine the power-law index in the inertial range. To observe
the anisotropic feature, even more dedicated analyses reconstructing
coordinates based on the local magnetic field will also be required.
Note that the shape of these power spectra is independent of the
integration range of R, because the turbulence is generated by the
same mechanism at all the radii.

3 B E H AV I O U R S O F H I G H - E N E R G Y
PA RT I C L E S

3.1 Set-up for particle simulations

We calculate orbits of relativistic particles to investigate behaviour
of high-energy particles in the accretion flows. We ignore CR
injection mechanisms because they are related to small-scale plasma
processes. They should be investigated by other methods, such as
PIC simulations (Hoshino 2015; Kunz et al. 2016), which is beyond
the scope of this paper.

We solve the relativistic equation of motion for each CR particle:

d p
dt

= e
(

E + v × B
c

)
, (15)

where t is the time for particle calculation, c is the speed of light,
and p = γmpv, v, e, mp, and γ =

√
1 − (v/c)2 are the momentum,

velocity, charge, mass, and Lorentz factor of the CR particle,
respectively. Here, we neglect the gravity acting on the CR particle,

since it is typically weaker than the electromagnetic force by more
than 10 orders of magnitude. This equation is integrated using the
Boris method (e.g. Birdsall & Langdon 1991), which is often used
in PIC simulations. In the particle simulations, we use mp and e for
protons, but we can scale our simulation results to the heavy nuclei
using the rigidity R = ε/Z.

The snapshot data of the MHD simulations shown in Section 2.2
are used to obtain E and B. Since the MHD data contain the values
of V and B only at the discrete grid points, we first interpolate B and
V at the position of the particle using quadratic functions.3 Then,
we compute E through equation (10), using the interpolated B and
V . This procedure guarantees E · B = 0, so artificial acceleration
due to the interpolation is avoided. We initially distribute particles
on a ring of R = Rini and θ = π /2. The energy distribution of the
initial particles is monoenergetic and isotropic in the fluid frame
(see Section 3.2 for the definition of the fluid frame). The initial
radius is fixed at Rini = 0.3Rc for simplicity. We performed the
simulations with Rini = 0.2Rc, and checked that the results are
almost unchanged. The initial energy of the particle, εini, is given
so that the Larmor radius of the particle is equal to λini times the
grid scale: rL = εini/(ecBave) = λini)xini, where )xini = min()Rini,
Rini)θ , Rini)φ) is the grid scale at the initial ring. The time-step of
the particle calculation is determined by )t = min()tL, )tx), where
)tL = CsafetL,min = 2πCsafeεini/(ecBmax) and )tx = Csafe)xmin/c.
Here, Bmax is the maximum value of the magnetic field, )xmin is
the minimum length between the grids in the computational region,
and Csafe represents the safety factor that determines the time-step.
We set Csafe = 0.01. We performed some simulations with Csafe =
0.001, and confirmed that the results are unchanged by the values
of Csafe. As a fiducial value, we set λini = 4. With a smaller value
of λini, we cannot trace the resonant scattering process, while the
particles escape from the computational region too quickly with a
higher value of λini.

The computational region for the particle simulations is the same
with the MHD simulations except for the outer boundary in the
R direction. Since the dynamical structures of the outer parts of
the MHD simulations are affected by the initial conditions, we set
the outer boundary of the particle simulations to Resc = 0.6Rc. The
particles that go beyond the computational region are removed from
the simulation, and we stop the calculation when half of the particles
escape from the computational region.

We solve the equations of motion for Np = 214 = 16 384 particles,
using the MHD data sets shown in the previous section. To solve
the equation of motion, we need to convert the units used in the
MHD calculations to those of our interest. The units of the mass,
length, and time for the MHD calculations are written as Lu = Rc,
Mu = ρcR

3
c , and Tu =

√
R3

c /(GM), respectively. For our particle
simulations, we rescale these units as

Lu = χRs, (16)

Tu =

√
L3

u

GM
, (17)

Mu = ηṀEddTu, (18)

3Although we use the quadratic functions for the interpolation, the results
are very similar if we use the linear interpolation.
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where ε is the particle energy. Such a power-law distribution is
expected if CRs are produced by first-order Fermi mechanisms,
such as the diffusive shock acceleration (Bell 1978; Blandford &
Ostriker 1978). However, it is unclear whether such a single
power-law distribution is achieved, because the accretion flows are
unlikely to have a strong shock. Although shocked accretion flows
may be formed in hot accretion flows (e.g. Le & Becker 2005;
Becker, Das & Le 2008), we do not observe such structures in
the multidimensional global hydrodynamic simulations (Yuan &
Narayan 2014). In the accretion flows without shocks, CRs are
expected to be produced by magnetic reconnection (e.g. Hoshino
2012) and/or stochastic acceleration by turbulence (e.g. Lynn et al.
2014). Inside accretion flows, magnetorotational instability (MRI)
generates strong turbulence and induces magnetic reconnection
(e.g. Balbus & Hawley 1991, 1998; Sano & Inutsuka 2001).
Recent Particle-In-Cell (PIC) simulations show that when MRI
takes place in collisionless plasma, magnetic reconnection produces
non-thermal particles (Riquelme et al. 2012; Hoshino 2013, 2015;
Kunz, Stone & Quataert 2016). These non-thermal particles can
further be accelerated stochastically through interactions with larger
scale eddies. However, current PIC simulations cannot track such
a late-time phase because of the computational limitation, although
recent developments of computational resources and techniques
partially enable us to simulate particle acceleration in turbulence
(Comisso & Sironi 2018; Zhdankin et al. 2018). The stochastic
particle acceleration by magnetohydrodynamic (MHD) turbulence
is often modeled as a diffusion phenomenon in energy space (e.g.
Blandford & Eichler 1987), which has been applied to various
astrophysical objects such as galaxy clusters (e.g. Blasi 2000;
Brunetti & Lazarian 2007; Fujita, Akamatsu & Kimura 2016),
gamma-ray bursts (e.g. Asano & Terasawa 2009; Murase et al.
2012a), radio-lobes of radio galaxies (e.g. Hardcastle et al. 2009;
O’Sullivan, Reville & Taylor 2009), and blazars (e.g. Katarzyński
et al. 2006; Asano et al. 2014). Engaging this stochastic acceleration
model to the hot accretion flow at the Galactic center, we can
explain flares of Sgr A∗ (Liu, Petrosian & Melia 2004), TeV gamma-
rays from the Galactic Center (Liu et al. 2006; Fujita, Kimura &
Murase 2015), and perhaps PeV CRs observed at the Earth (Fujita,
Murase & Kimura 2017). In addition, Kimura et al. (2015) showed
that using the acceleration model, hot accretion flows in LLAGNs
can reproduce the high-energy neutrinos detected by IceCube. Note
that the model leads to a very hard spectrum, −1 ≤ s ≤ 0, compared
to the shock acceleration.

In the stochastic acceleration model, the diffusion coefficient in
energy space is approximated by a power-law function of energy, Dε

≈ D0(ε/ε0)q. The values of q and D0 depend on the power spectrum
of the MHD turbulence and interaction processes between CRs
and MHD waves (e.g. Cho & Lazarian 2006). For example, gyro
resonant scattering by Alfven modes makes the value of q equal
to the slope of the power spectrum of the turbulence (e.g. Dermer,
Miller & Li 1996; Becker, Le & Dermer 2006; Stawarz & Petrosian
2008). The turbulent strength, (δB/B0)2, is related to D0, and analytic
theories used in the works above assume that the turbulent strength is
smaller than unity. However, this condition is likely to be violated in
weakly magnetized accretion flows according to MHD simulations
(e.g. Stone & Pringle 2001; McKinney 2006; Suzuki, Takahashi &
Kudoh 2014). Applicability of the analytic models to the strong
turbulence has been investigated using test particle simulations, but
it is still controversial. The turbulence is usually provided by a
superposition of plane waves in the Fourier space (e.g. O’Sullivan
et al. 2009; Fatuzzo & Melia 2014; Teraki, Ito & Nagataki 2015),
or driven by some algorithms (e.g. Dmitruk et al. 2003; Lynn et al.

2014; Teaca et al. 2014). These studies are useful to investigate
features of the stochastic acceleration owing to their controllablity
of the turbulence. However, each astronomical object has a different
driving mechanism of turbulence, which may lead to a different
behaviour of the CR particles (see Roh, Inutsuka & Inoue 2016 for
supernova remnants and Porth et al. 2016 for pulsar wind nebulae).

Kimura et al. (2016) performed test-particle simulations in the
MRI turbulence, using the shearing box approximation (Hawley,
Gammie & Balbus 1995). However, the shearing box approxi-
mation has a few inconsistencies with the hot accretion flows,
such as geometrical thickness and non-negligible advection cooling
(Narayan & Yi 1994). More importantly, escape of CRs cannot be
implemented in a realistic manner. In this paper, we present results of
global simulations, which enables us to investigate behaviours of the
high-energy CRs more consistently. We perform MHD simulations
to model hot and turbulent accretion flows, and solve orbits of test
particles using the snapshot data of the MHD simulations. This
paper is organized as follows. First, we describe the global MHD
simulations dedicated to the hot accretion flows in Section 2. Then,
we show the results of the test-particle simulations in Section 3.
We discuss implications and future directions in Section 4 and
summarize our results in Section 5.

2 PRO P E RT I E S O F TH E M R I TU R BU L E N C E

2.1 Set-up for MHD simulations

We use the Athena++ code1 to solve the set of the ideal MHD
equations (Stone et al. 2008, in preparation):

∂ρ

∂T
+ ∇ · (ρV ) = 0, (1)

∂(ρV )
∂T

+ ∇ ·
(

ρV V − B B
4π

+ P ∗I
)

= −ρ∇&, (2)

∂Etot

∂T
+ ∇ ·

[(
Etot + P ∗) V − B · V

4π
B
]

= −ρV · ∇&, (3)

∂ B
∂T

− ∇ × (V × B) = 0, (4)

where T is the time for the MHD calculations, ρ is the density, V
is the velocity of the MHD fluid, B is the magnetic field, P∗ = P
+ B2/(8π ) is the total pressure, P is the gas pressure, I is the unit
tensor, and & is the gravitational potential. The total energy of the
fluid is written as

Etot = Eth + 1
2
ρV 2 + B2

8π
, (5)

and we use the equation of state for ideal gas, P = (γ s − 1)Eth

(γ s = 5/3 is the specific heat ratio and Eth is the thermal energy).
We solve the MHD equations in the spherical polar coordinate,
(R, θ , φ), using the second-order van Leer integrator, the second-
order piecewise linear reconstruction, the Harten–Lax–van Leer
Discontinuities (HLLD) approximate Riemann solver (Miyoshi &
Kusano 2005), and the constrained transport scheme. We use the
Newtonian gravitational potential, & = −GM/R, where G is the
gravitational constant and M is the mass of the central black hole
(BH). With this potential, we do not have to specify the values of the

1https://princetonuniversity.github.io/athena/
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field in Fig. 5. We can see that all the data sets have similar values for
a larger scale of m ! 10. The spectra for Br and Bθ are mPm ∝ m,
while those for Bφ are roughly mPm ∝ m1/2. For a smaller scale of
m " Nφ /10, the spectra decrease with m very rapidly for all the data
sets because of the numerical dissipation. The power spectra peak
at intermediate scale of m ∼ 10 − 20, depending on the resolution
and component. These features are consistent with the previous
calculations (Sorathia et al. 2012; Suzuki & Inutsuka 2014).

The fastest growing mode of the MRI is approximated to be LMRI

∼ 2πVA/$, where $ is the angular velocity. Saturation of MRI
turbulence is expected to be controlled either by the large-scale
magnetic reconnection (Sano & Inutsuka 2001; Sano et al. 2004)
or by the growth of the parasitic instabilities of Kelvin–Helmholtz
modes (Goodman & Xu 1994; Pessah 2010). These phenomena
occur inside the disc, where the largest scale is the scale height,
H ≈ Cs/$. Hence, the characteristic scale of the saturated MRI
turbulence should be the smaller one of the two, Ltur ≈ min(LMRI,
H). From Fig. 2, we roughly see VA ∼ Vφ,bulk/7 and Cs ∼ Vφ,bulk/2,
leading to LMRI ≈ 2πR/7 > H ≈ R/2. Hence, Ltur = H ≈ R/2. This
scale corresponds to m ∼ 13, which is consistent with the peaks of
the power spectra.

For the intermediate scale, we narrowly see that the spectra
gradually decrease with m. Theoretically, fully developed Alfven
turbulence results in Pk ∝ k

−5/3
⊥ and Pk ∝ k−2

‖ , where Pk is the
power spectrum, k⊥ and k! are the perpendicular and parallel wave
numbers to the background magnetic field, respectively (Goldre-
ich & Sridhar 1995). Such an anisotropic cascade takes place with
respect to the local magnetic field. In strong turbulence where the
large-scale magnetic field is significantly tilted, the direction of the
local magnetic field is not aligned. Then, the global Fourier analysis
would smear out the local anisotropy, resulting in Pk ∝ k−5/3 in all
the directions (Cho & Vishniac 2000). However, we cannot clearly
see the power-law shape in the power spectra of our simulations,
due to the insufficient dynamic range. Simulations with a higher
resolution and a higher-order reconstruction scheme are necessary
to determine the power-law index in the inertial range. To observe
the anisotropic feature, even more dedicated analyses reconstructing
coordinates based on the local magnetic field will also be required.
Note that the shape of these power spectra is independent of the
integration range of R, because the turbulence is generated by the
same mechanism at all the radii.

3 B E H AV I O U R S O F H I G H - E N E R G Y
PA RT I C L E S

3.1 Set-up for particle simulations

We calculate orbits of relativistic particles to investigate behaviour
of high-energy particles in the accretion flows. We ignore CR
injection mechanisms because they are related to small-scale plasma
processes. They should be investigated by other methods, such as
PIC simulations (Hoshino 2015; Kunz et al. 2016), which is beyond
the scope of this paper.

We solve the relativistic equation of motion for each CR particle:

d p
dt

= e
(

E + v × B
c

)
, (15)

where t is the time for particle calculation, c is the speed of light,
and p = γmpv, v, e, mp, and γ =

√
1 − (v/c)2 are the momentum,

velocity, charge, mass, and Lorentz factor of the CR particle,
respectively. Here, we neglect the gravity acting on the CR particle,

since it is typically weaker than the electromagnetic force by more
than 10 orders of magnitude. This equation is integrated using the
Boris method (e.g. Birdsall & Langdon 1991), which is often used
in PIC simulations. In the particle simulations, we use mp and e for
protons, but we can scale our simulation results to the heavy nuclei
using the rigidity R = ε/Z.

The snapshot data of the MHD simulations shown in Section 2.2
are used to obtain E and B. Since the MHD data contain the values
of V and B only at the discrete grid points, we first interpolate B and
V at the position of the particle using quadratic functions.3 Then,
we compute E through equation (10), using the interpolated B and
V . This procedure guarantees E · B = 0, so artificial acceleration
due to the interpolation is avoided. We initially distribute particles
on a ring of R = Rini and θ = π /2. The energy distribution of the
initial particles is monoenergetic and isotropic in the fluid frame
(see Section 3.2 for the definition of the fluid frame). The initial
radius is fixed at Rini = 0.3Rc for simplicity. We performed the
simulations with Rini = 0.2Rc, and checked that the results are
almost unchanged. The initial energy of the particle, εini, is given
so that the Larmor radius of the particle is equal to λini times the
grid scale: rL = εini/(ecBave) = λini)xini, where )xini = min()Rini,
Rini)θ , Rini)φ) is the grid scale at the initial ring. The time-step of
the particle calculation is determined by )t = min()tL, )tx), where
)tL = CsafetL,min = 2πCsafeεini/(ecBmax) and )tx = Csafe)xmin/c.
Here, Bmax is the maximum value of the magnetic field, )xmin is
the minimum length between the grids in the computational region,
and Csafe represents the safety factor that determines the time-step.
We set Csafe = 0.01. We performed some simulations with Csafe =
0.001, and confirmed that the results are unchanged by the values
of Csafe. As a fiducial value, we set λini = 4. With a smaller value
of λini, we cannot trace the resonant scattering process, while the
particles escape from the computational region too quickly with a
higher value of λini.

The computational region for the particle simulations is the same
with the MHD simulations except for the outer boundary in the
R direction. Since the dynamical structures of the outer parts of
the MHD simulations are affected by the initial conditions, we set
the outer boundary of the particle simulations to Resc = 0.6Rc. The
particles that go beyond the computational region are removed from
the simulation, and we stop the calculation when half of the particles
escape from the computational region.

We solve the equations of motion for Np = 214 = 16 384 particles,
using the MHD data sets shown in the previous section. To solve
the equation of motion, we need to convert the units used in the
MHD calculations to those of our interest. The units of the mass,
length, and time for the MHD calculations are written as Lu = Rc,
Mu = ρcR

3
c , and Tu =

√
R3

c /(GM), respectively. For our particle
simulations, we rescale these units as

Lu = χRs, (16)

Tu =

√
L3

u

GM
, (17)

Mu = ηṀEddTu, (18)

3Although we use the quadratic functions for the interpolation, the results
are very similar if we use the linear interpolation.
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Figure 3. Colormaps in the meridional plane for run A. Left: density on the φ = 0 plane. Center: magnetic energy density, B2/(8π ), on the φ = 0 plane. Right:
Azimuthally averaged Vφ , 〈Vφ〉L, on the R − φ plane. The white lines are iso-contours of 〈Vφ〉L.

Vbul, φ as the background velocity for analyses of the test-particle
simulations in Section 3.2.

Fig. 4 plots the colormaps of the density (upper) and the magnetic
energy (lower) on the equatorial plane. The magnetic fields are
frozen in the differentially rotating fluid elements that fall to the
BH. This creates the spiral structure as seen in the figure. We can
also see that the fluctuation of the density is much smaller than
that of the magnetic field energy density. This implies that the fast
modes are a sub-dominant component in the MRI turbulence.

To clarify the importance of the modes of the MHD waves (fast,
slow, and Alfven), we evaluate the Pearson correlation coefficients
between the fluctuations of the density, δρ(R, θ,φ) = ρ − 〈ρ〉L,
and the magnetic energy, δB2(R, θ, φ) = B2 − 〈B2〉L. According
to the linear MHD wave theory, the fast mode has a positive
correlation, the slow mode has a negative correlation, and the Alfven
mode has no correlation. We evaluate the correlation coefficients
as a function of R and θ , and average over them with weights
associated with the area in the meridional plane. The resulting
coefficients indicate that the density and magnetic energy are weakly
anticorrelated: the value of the coefficient is −0.22 in the disc
region (|cos θ ! 0.45|) for run A. The lower resolution runs have
higher coefficients, i.e. the anticorrelations are weaker, but no run
has a positive correlation. Therefore, the fast modes do not play
an important role in this system. This result is natural in the sub-
Alfvenic and sub-sonic turbulence.

Finally, we discuss the azimuthal power spectra of the turbulence
(cf. Sorathia et al. 2012; Suzuki & Inutsuka 2014; see Parkin &
Bicknell 2013 for three-dimensional power spectra). We take the
Fourier transformation in the azimuthal direction,

Xm = 1√
2π

∫
X exp(−imφ)dφ, (13)

where m = kφR (kφ is the wavenumber in the φ direction). Then,
we take the average of the power spectrum over the disc region:

Pm =
∫

|Xm|2RdRdθ∫
RdRdθ

, (14)

where the integration region is set to be 0.1Rc ≤ R ≤ 0.6Rc and
|cos θ | ≤ 0.45. We plot the power spectra, mPm, for the magnetic

Figure 4. Colormaps in the equatorial plane for run A. The upper and lower
panels show the density and the magnetic energy density, respectively.
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• Put mono-energetic ultra-relativistic particles on a 
ring at (R, θ) = (0.3, π/2) with random momentum 
directions

• Magnetic fields are directed to azimuth direction 
with a spiral due to shear & accretion motions

• Inner regions have stronger magnetic fields 
→magnetic mirror forces acts outward
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Figure 6. Orbits of test particles projected to the R − θ plane (upper panel)
and the R − φ plane (lower panel) for λini = 4. The initial and final positions
of the particles are shown by the stars and circles, respectively. In the bottom
panel, the cyan circle and black arrows indicate the initial ring R = Rini and
the rotation direction, respectively.

where eφ is the unit vector of the φ direction and Vbul, φ is inde-
pendent of θ . The bottom panel shows the momentum distribution
in the fluid frame, where we can see no bulk rotational motion. In
the following sections, we use the energy distribution in the fluid
frame. Note that the particle distribution is slightly anisotropic: the
particles tend to have positive pR and negative pφ . This is because
the particles tend to move radially outward along the spiral magnetic
field, as discussed above. This anisotropy becomes stronger in later
time and for higher energy particles (see Section 3.2.3). Since this
anisotropy appears in the particle simulations with all the MHD
data sets, the grid spacing and resolutions are not the cause of the
anisotropy.

3.2.2 Diffusion in energy space

We examine evolution of the energy distribution function in the fluid
frame. The time evolution of the energy distribution for λini = 4 is
shown in Fig. 8. We can see that the width of the energy distribution
increases with time. This motivates us to consider the diffusion
equation in the energy space.

In general, the transport equation, including the diffusion and
advection terms in both configuration and momentum spaces,

Figure 7. Momentum distributions at t = 10tL in the lab frame (upper)
and the fluid flame (lower) for λini = 4. We can see a bulk motion in the
lab-frame, while the bulk motion is not seen in the fluid frame.

Figure 8. Energy distribution function at t = 4tL, 10tL, and 25tL in fluid
flame for λini = 4. The distribution function diffuses in the energy space.

describes the evolution of the distribution function for the particles
with isotropic distribution in the fluid rest frame (e.g. Skilling
1975; Strong, Moskalenko & Ptuskin 2007). When the terms for
configuration space and the advection term in momentum space are
negligible, the transport equation may be simplified to the diffusion
equation only in momentum space (e.g. Stawarz & Petrosian 2008):

∂f

∂t
= 1

p2

∂

∂p

(
p2Dp

∂f

∂p

)
. (23)

Since the anisotropy in our system is not very strong, we apply this
equation to our system. We focus on the ultrarelativistic regime,
so the particle energy is approximated to be ε ≈ pc. Using the
differential number density, Nε = Np/c = 4πp2f/c, we can write

MNRAS 485, 163–178 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/485/1/163/5305870 by guest on 29 April 2019

170 S.S. Kimura, K. Tomida and K. Murase

Figure 6. Orbits of test particles projected to the R − θ plane (upper panel)
and the R − φ plane (lower panel) for λini = 4. The initial and final positions
of the particles are shown by the stars and circles, respectively. In the bottom
panel, the cyan circle and black arrows indicate the initial ring R = Rini and
the rotation direction, respectively.

where eφ is the unit vector of the φ direction and Vbul, φ is inde-
pendent of θ . The bottom panel shows the momentum distribution
in the fluid frame, where we can see no bulk rotational motion. In
the following sections, we use the energy distribution in the fluid
frame. Note that the particle distribution is slightly anisotropic: the
particles tend to have positive pR and negative pφ . This is because
the particles tend to move radially outward along the spiral magnetic
field, as discussed above. This anisotropy becomes stronger in later
time and for higher energy particles (see Section 3.2.3). Since this
anisotropy appears in the particle simulations with all the MHD
data sets, the grid spacing and resolutions are not the cause of the
anisotropy.

3.2.2 Diffusion in energy space

We examine evolution of the energy distribution function in the fluid
frame. The time evolution of the energy distribution for λini = 4 is
shown in Fig. 8. We can see that the width of the energy distribution
increases with time. This motivates us to consider the diffusion
equation in the energy space.

In general, the transport equation, including the diffusion and
advection terms in both configuration and momentum spaces,

Figure 7. Momentum distributions at t = 10tL in the lab frame (upper)
and the fluid flame (lower) for λini = 4. We can see a bulk motion in the
lab-frame, while the bulk motion is not seen in the fluid frame.

Figure 8. Energy distribution function at t = 4tL, 10tL, and 25tL in fluid
flame for λini = 4. The distribution function diffuses in the energy space.

describes the evolution of the distribution function for the particles
with isotropic distribution in the fluid rest frame (e.g. Skilling
1975; Strong, Moskalenko & Ptuskin 2007). When the terms for
configuration space and the advection term in momentum space are
negligible, the transport equation may be simplified to the diffusion
equation only in momentum space (e.g. Stawarz & Petrosian 2008):

∂f

∂t
= 1

p2

∂

∂p

(
p2Dp

∂f

∂p

)
. (23)

Since the anisotropy in our system is not very strong, we apply this
equation to our system. We focus on the ultrarelativistic regime,
so the particle energy is approximated to be ε ≈ pc. Using the
differential number density, Nε = Np/c = 4πp2f/c, we can write
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Figure 4. Colormaps in the equatorial plane for run A. The upper and lower
panels show the density and the magnetic energy density, respectively.
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• Evaluate particle energy in fluid rest frame 
• Energy distribution function diffuses in energy space
• The dispersion of the energy distribution is proportional to time 

→ diffusion in energy space
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Figure 9. Time evolution of the variance of the particle energy, σ 2
ε for

λini = 1, (blue-slid line), 2 (red-dashed line), 4 (green-dotted line), and 8
(magenta-dot-dashed line). We can see that σ 2

ε ∝ t for t ! tint.

the evolution of Nε by the advection-diffusion equation in energy
space:

∂Nε

∂t
= ∂

∂ε

(
Dε

∂Nε

∂ε

)
− ∂

∂ε

(
2Dε

ε
Nε

)
. (24)

In our simulation, most of the particles are confined in a narrow
energy range of ε ∼ εini. Thus, we approximate that Dε ≈ Dεini and
2Dε/ε ≈ vεini are constant. Then, after some algebra, we obtain the
time evolution of the mean and variance of the energy distribution:

µε = 1
Nactv

∫
Nεεdε ≈ εini + vεini t (25)

σ 2
ε = 1

Nactv

∫
Nεε

2dε − µ2
ε ≈ 2Dεini t (26)

where Nactv is the number of the particles confined in the computa-
tional region (see Appendix A for derivation).

Fig. 9 shows the time evolution of σ 2
ε for λini = 1, 2, 4, and 8 from

t = 0.1tL to the end of the simulation. Initially, σ 2
ε rapidly increases

with time for all the models. Due to the turbulent velocity component
whose amplitude is about 10 per cent of the background velocity,
the particles are not exactly in the rest frame of the fluid elements,
which causes drift motions. This leads to the initial jump of σ 2

ε .
For λini = 1, 2, and 4, σ 2

ε becomes almost constant at σ 2
ε ∼ 10−4ε2

ini
after t ! 0.3tL, because the particles start to move with the local
drift velocity. In the late time, the particles start interacting with
the turbulence, and σ 2

ε ∝ t is realized. For λini = 8, σ 2
ε continues

to increase and approaches σ 2
ε ∝ t , because the gyration period is

comparable to the interaction time-scale with the turbulence. From
the results, we find that the interaction time-scale can be expressed
as tint ∼ 1 × 103 − 2 × 103M8χ1.7 s, including the parameter
dependence. This is about a factor of 4 shorter than the crossing
time of the turbulent length, Ltur/c ∼ 7 × 103M8χ1.7 s, i.e. we can
write tint ∼ Ltur/(4c).

This result, σ 2
ε ∝ t for t > tint, indicates that the particle acceler-

ation in the MRI turbulence occurs through the diffusion in energy
space. In the sub-sonic turbulence including the MRI turbulence,
the slow modes are expected to play an important role in particle
scattering (Lynn et al. 2014). We can consider two mechanisms
that change the particle energy in such turbulence: the Fermi-type
B mechanism (FTB; see e.g. Lynn et al. 2012) and the transit-
time damping (TTD). In FTB, the particles stream along a curved
magnetic field that has a velocity. Then, the particles gain or lose
energy at the fluid frame after the magnetic field sufficiently change

the direction (see fig. 1 of Lynn et al. 2012). The mean velocity of
the magnetic field is expected to be VR,tur in our MHD simulation.
Then, the energy change per ‘collision’ is approximated to be
'ε ∼ εVR,tur/c. Using the interaction time with the turbulence,
tint ≈ Ltur/(4c), the diffusion coefficient in energy space can be
estimated to be (e.g. Blandford & Eichler 1987)

Dε,FTB ≈ 1
3

'ε2

tint
∼ 4ε2

3
c

Ltur

(
VR,tur

c

)2

(27)

∝ ε2M−1χ−2 ∝ λ2
iniχ

−5/2η.

In the last equation, we write down the parameter dependence using
ε ≈ εini ∝ λiniM1/2χ−1/4η1/2. We can use the relation because the
energy of the particles does not change very much in each run of
the particle simulations.

TTD requires the resonant condition: vpha & v!, where vpha is
the phase velocity of the slow mode and v! is the particle velocity
parallel to the magnetic field. For the relativistic particles in weak
sub-sonic turbulence, the condition for TTD cannot be satisfied,
because v! ∼ c is always much faster than vpha ∼ VA. However, in
strong turbulence, the relativistic particles can interact with the slow
mode because non-linear effects broaden the energy range of the
resonant particles (Yan & Lazarian 2008; Lynn et al. 2014). If TTD
is effective, the mean energy change per collision is typically εVA/c.
Then, the diffusion coefficient in energy space can be estimated to
be

Dε,TTD ∼ ε2

3

(
VA

c

)2

t−1
int ∝ ε2M−1χ−2. (28)

The parameter dependence of Dε,TTD is the same as that of Dε,FTB,
while the normalization of Dε,TTD is higher than that of Dε,FTB.

We calculate Dε with various values of λini = (0.5, 1, 2, 4, 8, 16),
M = (107 M', 108 M'), χ = (30, 50, 100, 200), and η = (1, 10),
and show the resulting Dε in Fig. 10. We combine the simulation
results with various εini to discuss the energy dependence of Dε . For
the calculations with εini ! 103 PeV, the particles escape from the
computational region before the condition σ 2

ε ∝ t is realized, so we
only plot the results with εini < 103 PeV. The parameter dependence
of Dε is consistent with both of the simple estimates above: Dε ∝ ε2

in the upper panel and Dε ∝ χ−5/2η for λini = 4 in the lower panel.
The normalization of the simple estimates is consistent with the
simulation results within a factor of 3, while Dε,FTB matches better
than Dε,TTD. For the rest of the paper, we use Dε,FTB as a diffusion
coefficient in energy space. The acceleration time is estimated to
be

tacc ≈ ε2

2Dε,FTB
∼ 3

2

(
c

VR,tur

)2

tint ∼ 1.7 × 107M8χ
2
1.7s. (29)

This acceleration time is independent of energy. Note that the fast
modes have little influence on particle scattering in our simulation
because they do not have enough power as discussed in Section 2.2.

The values of Dε can be estimated in two ways using either µε

or σ ε , and these can be different when the particle distribution is
anisotropic. We evaluate the time evolution of µε via equation (25),
and confirm that the two methods are consistent with each other
within a factor of 3 for λini " 8. So far, we have assumed that Dε

is constant, but our results indicate that Dε ∝ ε2 is more realistic.
For the case with Dε ∝ ε2, we can derive the time evolution of µε

and σ 2
ε without assuming that Dε is constant. Then, as shown in the

Appendix, the evolution of σ 2
ε is unchanged, while the increasing

rate of µε is twice higher than that given by equation (25):

µε ≈ εini + 2vεini t . (30)
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Figure 6. Orbits of test particles projected to the R − θ plane (upper panel)
and the R − φ plane (lower panel) for λini = 4. The initial and final positions
of the particles are shown by the stars and circles, respectively. In the bottom
panel, the cyan circle and black arrows indicate the initial ring R = Rini and
the rotation direction, respectively.

where eφ is the unit vector of the φ direction and Vbul, φ is inde-
pendent of θ . The bottom panel shows the momentum distribution
in the fluid frame, where we can see no bulk rotational motion. In
the following sections, we use the energy distribution in the fluid
frame. Note that the particle distribution is slightly anisotropic: the
particles tend to have positive pR and negative pφ . This is because
the particles tend to move radially outward along the spiral magnetic
field, as discussed above. This anisotropy becomes stronger in later
time and for higher energy particles (see Section 3.2.3). Since this
anisotropy appears in the particle simulations with all the MHD
data sets, the grid spacing and resolutions are not the cause of the
anisotropy.

3.2.2 Diffusion in energy space

We examine evolution of the energy distribution function in the fluid
frame. The time evolution of the energy distribution for λini = 4 is
shown in Fig. 8. We can see that the width of the energy distribution
increases with time. This motivates us to consider the diffusion
equation in the energy space.

In general, the transport equation, including the diffusion and
advection terms in both configuration and momentum spaces,

Figure 7. Momentum distributions at t = 10tL in the lab frame (upper)
and the fluid flame (lower) for λini = 4. We can see a bulk motion in the
lab-frame, while the bulk motion is not seen in the fluid frame.

Figure 8. Energy distribution function at t = 4tL, 10tL, and 25tL in fluid
flame for λini = 4. The distribution function diffuses in the energy space.

describes the evolution of the distribution function for the particles
with isotropic distribution in the fluid rest frame (e.g. Skilling
1975; Strong, Moskalenko & Ptuskin 2007). When the terms for
configuration space and the advection term in momentum space are
negligible, the transport equation may be simplified to the diffusion
equation only in momentum space (e.g. Stawarz & Petrosian 2008):

∂f

∂t
= 1

p2

∂

∂p

(
p2Dp

∂f

∂p

)
. (23)

Since the anisotropy in our system is not very strong, we apply this
equation to our system. We focus on the ultrarelativistic regime,
so the particle energy is approximated to be ε ≈ pc. Using the
differential number density, Nε = Np/c = 4πp2f/c, we can write
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Figure 9. Time evolution of the variance of the particle energy, σ 2
ε for

λini = 1, (blue-slid line), 2 (red-dashed line), 4 (green-dotted line), and 8
(magenta-dot-dashed line). We can see that σ 2

ε ∝ t for t ! tint.

the evolution of Nε by the advection-diffusion equation in energy
space:

∂Nε

∂t
= ∂

∂ε

(
Dε

∂Nε

∂ε

)
− ∂

∂ε

(
2Dε

ε
Nε

)
. (24)

In our simulation, most of the particles are confined in a narrow
energy range of ε ∼ εini. Thus, we approximate that Dε ≈ Dεini and
2Dε/ε ≈ vεini are constant. Then, after some algebra, we obtain the
time evolution of the mean and variance of the energy distribution:

µε = 1
Nactv

∫
Nεεdε ≈ εini + vεini t (25)

σ 2
ε = 1

Nactv

∫
Nεε

2dε − µ2
ε ≈ 2Dεini t (26)

where Nactv is the number of the particles confined in the computa-
tional region (see Appendix A for derivation).

Fig. 9 shows the time evolution of σ 2
ε for λini = 1, 2, 4, and 8 from

t = 0.1tL to the end of the simulation. Initially, σ 2
ε rapidly increases

with time for all the models. Due to the turbulent velocity component
whose amplitude is about 10 per cent of the background velocity,
the particles are not exactly in the rest frame of the fluid elements,
which causes drift motions. This leads to the initial jump of σ 2

ε .
For λini = 1, 2, and 4, σ 2

ε becomes almost constant at σ 2
ε ∼ 10−4ε2

ini
after t ! 0.3tL, because the particles start to move with the local
drift velocity. In the late time, the particles start interacting with
the turbulence, and σ 2

ε ∝ t is realized. For λini = 8, σ 2
ε continues

to increase and approaches σ 2
ε ∝ t , because the gyration period is

comparable to the interaction time-scale with the turbulence. From
the results, we find that the interaction time-scale can be expressed
as tint ∼ 1 × 103 − 2 × 103M8χ1.7 s, including the parameter
dependence. This is about a factor of 4 shorter than the crossing
time of the turbulent length, Ltur/c ∼ 7 × 103M8χ1.7 s, i.e. we can
write tint ∼ Ltur/(4c).

This result, σ 2
ε ∝ t for t > tint, indicates that the particle acceler-

ation in the MRI turbulence occurs through the diffusion in energy
space. In the sub-sonic turbulence including the MRI turbulence,
the slow modes are expected to play an important role in particle
scattering (Lynn et al. 2014). We can consider two mechanisms
that change the particle energy in such turbulence: the Fermi-type
B mechanism (FTB; see e.g. Lynn et al. 2012) and the transit-
time damping (TTD). In FTB, the particles stream along a curved
magnetic field that has a velocity. Then, the particles gain or lose
energy at the fluid frame after the magnetic field sufficiently change

the direction (see fig. 1 of Lynn et al. 2012). The mean velocity of
the magnetic field is expected to be VR,tur in our MHD simulation.
Then, the energy change per ‘collision’ is approximated to be
'ε ∼ εVR,tur/c. Using the interaction time with the turbulence,
tint ≈ Ltur/(4c), the diffusion coefficient in energy space can be
estimated to be (e.g. Blandford & Eichler 1987)

Dε,FTB ≈ 1
3

'ε2

tint
∼ 4ε2

3
c

Ltur

(
VR,tur

c

)2

(27)

∝ ε2M−1χ−2 ∝ λ2
iniχ

−5/2η.

In the last equation, we write down the parameter dependence using
ε ≈ εini ∝ λiniM1/2χ−1/4η1/2. We can use the relation because the
energy of the particles does not change very much in each run of
the particle simulations.

TTD requires the resonant condition: vpha & v!, where vpha is
the phase velocity of the slow mode and v! is the particle velocity
parallel to the magnetic field. For the relativistic particles in weak
sub-sonic turbulence, the condition for TTD cannot be satisfied,
because v! ∼ c is always much faster than vpha ∼ VA. However, in
strong turbulence, the relativistic particles can interact with the slow
mode because non-linear effects broaden the energy range of the
resonant particles (Yan & Lazarian 2008; Lynn et al. 2014). If TTD
is effective, the mean energy change per collision is typically εVA/c.
Then, the diffusion coefficient in energy space can be estimated to
be

Dε,TTD ∼ ε2

3

(
VA

c

)2

t−1
int ∝ ε2M−1χ−2. (28)

The parameter dependence of Dε,TTD is the same as that of Dε,FTB,
while the normalization of Dε,TTD is higher than that of Dε,FTB.

We calculate Dε with various values of λini = (0.5, 1, 2, 4, 8, 16),
M = (107 M', 108 M'), χ = (30, 50, 100, 200), and η = (1, 10),
and show the resulting Dε in Fig. 10. We combine the simulation
results with various εini to discuss the energy dependence of Dε . For
the calculations with εini ! 103 PeV, the particles escape from the
computational region before the condition σ 2

ε ∝ t is realized, so we
only plot the results with εini < 103 PeV. The parameter dependence
of Dε is consistent with both of the simple estimates above: Dε ∝ ε2

in the upper panel and Dε ∝ χ−5/2η for λini = 4 in the lower panel.
The normalization of the simple estimates is consistent with the
simulation results within a factor of 3, while Dε,FTB matches better
than Dε,TTD. For the rest of the paper, we use Dε,FTB as a diffusion
coefficient in energy space. The acceleration time is estimated to
be

tacc ≈ ε2

2Dε,FTB
∼ 3

2

(
c

VR,tur

)2

tint ∼ 1.7 × 107M8χ
2
1.7s. (29)

This acceleration time is independent of energy. Note that the fast
modes have little influence on particle scattering in our simulation
because they do not have enough power as discussed in Section 2.2.

The values of Dε can be estimated in two ways using either µε

or σ ε , and these can be different when the particle distribution is
anisotropic. We evaluate the time evolution of µε via equation (25),
and confirm that the two methods are consistent with each other
within a factor of 3 for λini " 8. So far, we have assumed that Dε

is constant, but our results indicate that Dε ∝ ε2 is more realistic.
For the case with Dε ∝ ε2, we can derive the time evolution of µε

and σ 2
ε without assuming that Dε is constant. Then, as shown in the

Appendix, the evolution of σ 2
ε is unchanged, while the increasing

rate of µε is twice higher than that given by equation (25):

µε ≈ εini + 2vεini t . (30)
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Figure 9. Time evolution of the variance of the particle energy, σ 2
ε for

λini = 1, (blue-slid line), 2 (red-dashed line), 4 (green-dotted line), and 8
(magenta-dot-dashed line). We can see that σ 2

ε ∝ t for t ! tint.

the evolution of Nε by the advection-diffusion equation in energy
space:

∂Nε

∂t
= ∂

∂ε

(
Dε

∂Nε

∂ε

)
− ∂

∂ε

(
2Dε

ε
Nε

)
. (24)

In our simulation, most of the particles are confined in a narrow
energy range of ε ∼ εini. Thus, we approximate that Dε ≈ Dεini and
2Dε/ε ≈ vεini are constant. Then, after some algebra, we obtain the
time evolution of the mean and variance of the energy distribution:

µε = 1
Nactv

∫
Nεεdε ≈ εini + vεini t (25)

σ 2
ε = 1

Nactv

∫
Nεε

2dε − µ2
ε ≈ 2Dεini t (26)

where Nactv is the number of the particles confined in the computa-
tional region (see Appendix A for derivation).

Fig. 9 shows the time evolution of σ 2
ε for λini = 1, 2, 4, and 8 from

t = 0.1tL to the end of the simulation. Initially, σ 2
ε rapidly increases

with time for all the models. Due to the turbulent velocity component
whose amplitude is about 10 per cent of the background velocity,
the particles are not exactly in the rest frame of the fluid elements,
which causes drift motions. This leads to the initial jump of σ 2

ε .
For λini = 1, 2, and 4, σ 2

ε becomes almost constant at σ 2
ε ∼ 10−4ε2

ini
after t ! 0.3tL, because the particles start to move with the local
drift velocity. In the late time, the particles start interacting with
the turbulence, and σ 2

ε ∝ t is realized. For λini = 8, σ 2
ε continues

to increase and approaches σ 2
ε ∝ t , because the gyration period is

comparable to the interaction time-scale with the turbulence. From
the results, we find that the interaction time-scale can be expressed
as tint ∼ 1 × 103 − 2 × 103M8χ1.7 s, including the parameter
dependence. This is about a factor of 4 shorter than the crossing
time of the turbulent length, Ltur/c ∼ 7 × 103M8χ1.7 s, i.e. we can
write tint ∼ Ltur/(4c).

This result, σ 2
ε ∝ t for t > tint, indicates that the particle acceler-

ation in the MRI turbulence occurs through the diffusion in energy
space. In the sub-sonic turbulence including the MRI turbulence,
the slow modes are expected to play an important role in particle
scattering (Lynn et al. 2014). We can consider two mechanisms
that change the particle energy in such turbulence: the Fermi-type
B mechanism (FTB; see e.g. Lynn et al. 2012) and the transit-
time damping (TTD). In FTB, the particles stream along a curved
magnetic field that has a velocity. Then, the particles gain or lose
energy at the fluid frame after the magnetic field sufficiently change

the direction (see fig. 1 of Lynn et al. 2012). The mean velocity of
the magnetic field is expected to be VR,tur in our MHD simulation.
Then, the energy change per ‘collision’ is approximated to be
'ε ∼ εVR,tur/c. Using the interaction time with the turbulence,
tint ≈ Ltur/(4c), the diffusion coefficient in energy space can be
estimated to be (e.g. Blandford & Eichler 1987)

Dε,FTB ≈ 1
3

'ε2

tint
∼ 4ε2

3
c

Ltur

(
VR,tur

c

)2

(27)

∝ ε2M−1χ−2 ∝ λ2
iniχ

−5/2η.

In the last equation, we write down the parameter dependence using
ε ≈ εini ∝ λiniM1/2χ−1/4η1/2. We can use the relation because the
energy of the particles does not change very much in each run of
the particle simulations.

TTD requires the resonant condition: vpha & v!, where vpha is
the phase velocity of the slow mode and v! is the particle velocity
parallel to the magnetic field. For the relativistic particles in weak
sub-sonic turbulence, the condition for TTD cannot be satisfied,
because v! ∼ c is always much faster than vpha ∼ VA. However, in
strong turbulence, the relativistic particles can interact with the slow
mode because non-linear effects broaden the energy range of the
resonant particles (Yan & Lazarian 2008; Lynn et al. 2014). If TTD
is effective, the mean energy change per collision is typically εVA/c.
Then, the diffusion coefficient in energy space can be estimated to
be

Dε,TTD ∼ ε2

3

(
VA

c

)2

t−1
int ∝ ε2M−1χ−2. (28)

The parameter dependence of Dε,TTD is the same as that of Dε,FTB,
while the normalization of Dε,TTD is higher than that of Dε,FTB.

We calculate Dε with various values of λini = (0.5, 1, 2, 4, 8, 16),
M = (107 M', 108 M'), χ = (30, 50, 100, 200), and η = (1, 10),
and show the resulting Dε in Fig. 10. We combine the simulation
results with various εini to discuss the energy dependence of Dε . For
the calculations with εini ! 103 PeV, the particles escape from the
computational region before the condition σ 2

ε ∝ t is realized, so we
only plot the results with εini < 103 PeV. The parameter dependence
of Dε is consistent with both of the simple estimates above: Dε ∝ ε2

in the upper panel and Dε ∝ χ−5/2η for λini = 4 in the lower panel.
The normalization of the simple estimates is consistent with the
simulation results within a factor of 3, while Dε,FTB matches better
than Dε,TTD. For the rest of the paper, we use Dε,FTB as a diffusion
coefficient in energy space. The acceleration time is estimated to
be

tacc ≈ ε2

2Dε,FTB
∼ 3

2

(
c

VR,tur

)2

tint ∼ 1.7 × 107M8χ
2
1.7s. (29)

This acceleration time is independent of energy. Note that the fast
modes have little influence on particle scattering in our simulation
because they do not have enough power as discussed in Section 2.2.

The values of Dε can be estimated in two ways using either µε

or σ ε , and these can be different when the particle distribution is
anisotropic. We evaluate the time evolution of µε via equation (25),
and confirm that the two methods are consistent with each other
within a factor of 3 for λini " 8. So far, we have assumed that Dε

is constant, but our results indicate that Dε ∝ ε2 is more realistic.
For the case with Dε ∝ ε2, we can derive the time evolution of µε

and σ 2
ε without assuming that Dε is constant. Then, as shown in the

Appendix, the evolution of σ 2
ε is unchanged, while the increasing

rate of µε is twice higher than that given by equation (25):

µε ≈ εini + 2vεini t . (30)
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Figure 6. Orbits of test particles projected to the R − θ plane (upper panel)
and the R − φ plane (lower panel) for λini = 4. The initial and final positions
of the particles are shown by the stars and circles, respectively. In the bottom
panel, the cyan circle and black arrows indicate the initial ring R = Rini and
the rotation direction, respectively.

where eφ is the unit vector of the φ direction and Vbul, φ is inde-
pendent of θ . The bottom panel shows the momentum distribution
in the fluid frame, where we can see no bulk rotational motion. In
the following sections, we use the energy distribution in the fluid
frame. Note that the particle distribution is slightly anisotropic: the
particles tend to have positive pR and negative pφ . This is because
the particles tend to move radially outward along the spiral magnetic
field, as discussed above. This anisotropy becomes stronger in later
time and for higher energy particles (see Section 3.2.3). Since this
anisotropy appears in the particle simulations with all the MHD
data sets, the grid spacing and resolutions are not the cause of the
anisotropy.

3.2.2 Diffusion in energy space

We examine evolution of the energy distribution function in the fluid
frame. The time evolution of the energy distribution for λini = 4 is
shown in Fig. 8. We can see that the width of the energy distribution
increases with time. This motivates us to consider the diffusion
equation in the energy space.

In general, the transport equation, including the diffusion and
advection terms in both configuration and momentum spaces,

Figure 7. Momentum distributions at t = 10tL in the lab frame (upper)
and the fluid flame (lower) for λini = 4. We can see a bulk motion in the
lab-frame, while the bulk motion is not seen in the fluid frame.

Figure 8. Energy distribution function at t = 4tL, 10tL, and 25tL in fluid
flame for λini = 4. The distribution function diffuses in the energy space.

describes the evolution of the distribution function for the particles
with isotropic distribution in the fluid rest frame (e.g. Skilling
1975; Strong, Moskalenko & Ptuskin 2007). When the terms for
configuration space and the advection term in momentum space are
negligible, the transport equation may be simplified to the diffusion
equation only in momentum space (e.g. Stawarz & Petrosian 2008):

∂f

∂t
= 1

p2

∂

∂p

(
p2Dp

∂f

∂p

)
. (23)

Since the anisotropy in our system is not very strong, we apply this
equation to our system. We focus on the ultrarelativistic regime,
so the particle energy is approximated to be ε ≈ pc. Using the
differential number density, Nε = Np/c = 4πp2f/c, we can write
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Murase K., Dermer C. D., Takami H., Migliori G., 2012b, Astrophys. J.,

749, 63
Nakamura K. E., Kusunose M., Matsumoto R., Kato S., 1997, PASJ, 49,

503
Narayan R., Yi I., 1994, ApJ, 428, L13
Narayan R., Yi I., 1995, ApJ, 452, 710
Narayan R., Yi I., Mahadevan R., 1995, Nature, 374, 623
Narayan R., Igumenshchev I. V., Abramowicz M. A., 2003, PASJ, 55,

L69
Nemmen R. S., Storchi-Bergmann T., Yuan F., Eracleous M., Terashima Y.,

Wilson A. S., 2006, ApJ, 643, 652
Nemmen R. S., Storchi-Bergmann T., Eracleous M., 2014, MNRAS, 438,

2804
Netzer H., 2003, ApJ, 583, L5
Niedźwiecki A., Xie F.-G., Stepnik A., 2013, MNRAS, 432, 1576
O’Sullivan S., Reville B., Taylor A. M., 2009, MNRAS, 400, 248
Ohsuga K., Mineshige S., 2011, ApJ, 736, 2
Oka K., Manmoto T., 2003, MNRAS, 340, 543
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APPENDI X A: DERI VATI ON OF RELATIO N
BETWEEN σ 2

ε A N D Dε

Under the approximation of Dε ≈ Dεini and 2Dε/ε ≈ vεini , equa-
tion (24) is expressed as

∂Nε

∂t
= Dεini

∂2Nε

∂ε2
− vεini

∂Nε

∂ε
. (A1)

The mean of the momentum is written as µε =
∫

Nεεdε/Nactv. Its
time derivative is

dµε

dt
= 1

Nactv

∫
ε
∂Nε

∂t
dε

≈ 1
Nactv

∫ (
εDεini

∂2Nε

∂ε2
− εvεini

∂Nε

∂ε

)
dε

= 1
Nactv

∫ (
−Dεini

∂Nε

∂ε
+ vεiniNε

)
dε

= vεini , (A2)

where we use a partial integration and Nε → 0 for ε → ∞ and ε

→ 0. Integrating both sides with t, we obtain

µε ≈ εini + vεini t (A3)

A similar calculation gives us the variance σ 2
ε . The variance of

the momentum is written as σ 2
ε =

∫
Nεε

2dε/Nactv − µ2
ε . Its time

derivative is

dσ 2
ε

dt
= 1

Nactv

∫
ε2 ∂Nε

∂t
dε − 2µε

dµε

dt

≈ 1
Nactv

∫ (
ε2Dεini

∂2Nε

∂ε2
− ε2vεini

∂Nε

∂ε

)
dε − 2µεvεini

≈ 1
Nactv

∫ (
−2εDεini

∂Nε

∂ε
+ 2εvεiniNε

)
dε − 2µεvεini

= 2Dεini . (A4)

Hence, we obtain

σ 2
ε ≈ 2Dεini t . (A5)

For the special case of Dε = Dεini (ε/εini)2, we can derive the time
evolution of µε and σ 2

ε by similar algebra without assuming that Dε

is constant. Using equation (24), the time derivative of µε is written
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Figure 10. Parameter dependence of Dε . The upper panel shows the energy
dependence of Dε with various resolutions. The lower panel depicts the
dependence on χ with various η and M. We use λini = 4 and the MHD data
set of run A. We can see Dε,FTB is consistent with the simulation results
within a factor of 2. Dε,TTD is also consistent within a factor of 3.

We also estimate the values of Dε based on the above equation,
and the results agree with those obtained by σ 2

ε within a factor of 2
for λini ≤ 8 as shown in the Appendix, implying the improvement
compared to those based on equation (25). For the models with
λini ! 8, the anisotropy is large enough to affect the momentum
diffusion, and the agreement becomes worse. However, this does
not affect the discussion on the maximum energy in Section 4,
because in reality, high-energy particles escape from the system
before they attain the energy corresponding to λini ! 8.

3.2.3 Behaviour in configuration space

First, we discuss the displacement in R direction, which is directly
related to the escape process. We estimate time evolutions of the
mean and the variance of the radial displacement:

µδR = 1
Nactv

∑

j

δRj , (31)

σ 2
δR = 1

Nactv

∑

j

δR2
j − µ2

δR, (32)

where δRj = Rj − Rini is the radial displacement of each particle
and Nactv is the number of the confined particles. Summation is
performed over the particles confined in the computational region.
µδR represents the bulk motion of CR particles, while σ 2

δR expresses
the diffusive motion.

Figure 11. Time evolution of the mean and variance of the radial displace-
ment. The thin and thick lines depict µ2

δR and σ 2
δR for λini = 2 (solid), 4

(dashed), and 8 (dot-dashed), respectively. The dotted lines indicate the time
dependence of σ 2

δR .

Figure 12. Time evolution of the variance of the radial displacement (thick
lines) and the escape fraction (thin lines) for λini = 4 with the various
computational regions shown in the legend.

We show µ2
δR and σ 2

δR for the cases with various energies (λini =
2, 4, and 8) in Fig. 11. In the early phase, the diffusive motion is
more efficient than the bulk CR motion. From the figure, we see that
the stochastic behaviour of CRs in configuration space cannot be de-
scribed as a usual diffusion. If the particles obey the usual diffusion,
σ 2

δR ∝ t2 at the beginning, and σ 2
δR ∝ t after scattering time-scale

(e.g. Casse, Lemoine & Pelletier 2002; Cohet & Marcowith 2016).
In our simulation, σ 2

δR initially increases with t2. After about a half of
the Larmor time-scale, we see a transition to σ 2

δR ∝ t1.4, and finally,
σ 2

δR becomes flat at the time when the escape fraction becomes non-
negligible. We analyse the data with various computational regions,
and find that the behaviour is essentially the same; σ 2

δR rapidly
increases initially, and it is flattened when the escape becomes
effective, as seen in Fig. 12. This trend is similar for the cases
with different parameter sets and other sets of the snapshot data of
the MHD simulations. Thus, the radial variance is approximately
written as

σ 2
δR ∼ r2

L

(
ζ t

tL

)ξ

, (33)
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set of run A. We can see Dε,FTB is consistent with the simulation results
within a factor of 2. Dε,TTD is also consistent within a factor of 3.

We also estimate the values of Dε based on the above equation,
and the results agree with those obtained by σ 2

ε within a factor of 2
for λini ≤ 8 as shown in the Appendix, implying the improvement
compared to those based on equation (25). For the models with
λini ! 8, the anisotropy is large enough to affect the momentum
diffusion, and the agreement becomes worse. However, this does
not affect the discussion on the maximum energy in Section 4,
because in reality, high-energy particles escape from the system
before they attain the energy corresponding to λini ! 8.

3.2.3 Behaviour in configuration space

First, we discuss the displacement in R direction, which is directly
related to the escape process. We estimate time evolutions of the
mean and the variance of the radial displacement:

µδR = 1
Nactv

∑

j

δRj , (31)

σ 2
δR = 1
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∑
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δR2
j − µ2

δR, (32)

where δRj = Rj − Rini is the radial displacement of each particle
and Nactv is the number of the confined particles. Summation is
performed over the particles confined in the computational region.
µδR represents the bulk motion of CR particles, while σ 2

δR expresses
the diffusive motion.

Figure 11. Time evolution of the mean and variance of the radial displace-
ment. The thin and thick lines depict µ2

δR and σ 2
δR for λini = 2 (solid), 4

(dashed), and 8 (dot-dashed), respectively. The dotted lines indicate the time
dependence of σ 2

δR .

Figure 12. Time evolution of the variance of the radial displacement (thick
lines) and the escape fraction (thin lines) for λini = 4 with the various
computational regions shown in the legend.

We show µ2
δR and σ 2

δR for the cases with various energies (λini =
2, 4, and 8) in Fig. 11. In the early phase, the diffusive motion is
more efficient than the bulk CR motion. From the figure, we see that
the stochastic behaviour of CRs in configuration space cannot be de-
scribed as a usual diffusion. If the particles obey the usual diffusion,
σ 2

δR ∝ t2 at the beginning, and σ 2
δR ∝ t after scattering time-scale

(e.g. Casse, Lemoine & Pelletier 2002; Cohet & Marcowith 2016).
In our simulation, σ 2

δR initially increases with t2. After about a half of
the Larmor time-scale, we see a transition to σ 2

δR ∝ t1.4, and finally,
σ 2

δR becomes flat at the time when the escape fraction becomes non-
negligible. We analyse the data with various computational regions,
and find that the behaviour is essentially the same; σ 2

δR rapidly
increases initially, and it is flattened when the escape becomes
effective, as seen in Fig. 12. This trend is similar for the cases
with different parameter sets and other sets of the snapshot data of
the MHD simulations. Thus, the radial variance is approximately
written as

σ 2
δR ∼ r2

L

(
ζ t

tL

)ξ

, (33)
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Figure 5. Power spectra for the magnetic fields in the azimuthal direction. The left-hand, middle, and right-hand panels show the power spectra for Br, Bθ ,
and Bφ , respectively. The solid, dashed, dotted, and dot-dashed lines are for runs A, B, C, and D, respectively.

where Rs = 2GM/c2 is the Schwarzschild radius, ṀEdd = LEdd/c
2

is the Eddington mass accretion rate (LEdd is the Eddington
luminosity), and χ and η are the scaling factors of the length
and the mass, respectively. The relation between η and den-
sity is ρc = ηṀEddTu/L3

u, so a higher η leads to a higher
density.

We choose the reference parameter set for the particle simu-
lations so as to be consistent with our assumptions: hot accre-
tion flows in LLAGNs with Newtonian gravity. In our MHD
simulations, mass accretion rate is written as Ṁ ∼ ṁsimMuT−1

u ,
where ṁsim ∼ 10−3 − 10−2 is the resulting mass accretion rate in
the MHD simulations. Then, the rescaled mass accretion rate is
represented as Ṁ = ηṁsimṀEdd. For η ! 10, this mass accre-
tion rate is in the hot accretion flow regime, i.e. Ṁ ! 0.1ṀEdd

(Narayan & Yi 1995; Xie & Yuan 2012). The scale factor for
the length, χ , should be large enough to be consistent with the
Newtonian gravity. For χ ≥ 20, the initial radius, Rini = 0.3Rc, is
larger than 6Rs = 2RISCO, where RISCO = 3Rs is the innermost
circular stable orbit (ISCO) for the Schwartzchild BH. Based
on the considerations above, we set the reference parameters
to χ = 50, η = 1, and M = 108 M$, which corresponds to
typical low-luminosity AGNs, such as Seyferts or low-ionization
nuclear emission-line regions (LINERs). This parameter set
leads to

Lu % 1.5 × 1015M8χ1.7cm (19)

Tu % 4.9 × 105M8χ
3/2
1.7 s, (20)

Mu % 6.9 × 1030M2
8 χ

3/2
1.7 η0g, (21)

where we use the notation Qx = 10x (unit for M is M$). The speed
of light is c % 10χ

1/2
1.7 LuT−1

u in this unit system. We use the MHD
data set of run A with T&c = 20π unless otherwise noted. The
Larmor radius and time-scale are rL % 1.0 × 1013M8χ1.7λini, 0.6 cm
and tL % 2.1 × 103M8χ1.7λini, 0.6 s, respectively.

3.2 Results of particle simulations

3.2.1 Orbits and momentum distribution

The upper and lower panels of Fig. 6 show orbits of the test particles
projected in the R − θ and R − φ planes, respectively. The particles
spread in all the directions, but the majority of the particles move
outward in the R direction rather than fall on to the BH or escape
to the vertical direction. The particles are likely to migrate to the
direction at which the magnetic field is weak, partially due to the
magnetic mirror force. The strong magnetic fields at the inner region
prevent the particles from falling to the BH. Also, the magnetic
fields at the high latitudes are not weak, compare to those at the
outer region (see Fig. 3). At the end of the simulation, 68 per cent
of all the escaping particles go out through the radial boundary with
|cos θ | ≤ 0.5 for the case with λini = 4. This fraction is higher for
lower λini, and vice versa for higher λini. Higher energy particles
can cross the magnetic field more easily, which may enhance the
vertical diffusion.

From the lower panel, we find that the particles mostly travel
along the φ direction, because the magnetic field is also directed
to the φ direction. Interestingly, the outward-going particles tend
to move the opposite direction to the background fluid. This arises
from the magnetic field configuration. The accretion flow creates the
spiral-shape magnetic fields as seen in Fig. 4. When the CR particles
stream along the field line outward, they counterrotate with respect
to the accretion flow.

The upper panel of Fig. 7 shows the momentum distribution in
each direction, dN/dpi (i = r, θ , φ) measured in the lab frame at time
t = 10tL, where tL = 2πεini/(ecBini) and Bini =

√
〈B2〉S at R = Rini.

The momentum distribution is anisotropic: there is a bulk rotational
motion. This is because the background fluid motion creates the
electric field that induces E × B drift.

We compute the momentum distribution in the fluid frame by
performing Lorentz transformation of the particle momenta. Since
Vφ dominates over the other component, we approximate the
background velocity to be

V bg = Vbul,φeφ, (22)
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Figure 3. Colormaps in the meridional plane for run A. Left: density on the φ = 0 plane. Center: magnetic energy density, B2/(8π ), on the φ = 0 plane. Right:
Azimuthally averaged Vφ , 〈Vφ〉L, on the R − φ plane. The white lines are iso-contours of 〈Vφ〉L.

Vbul, φ as the background velocity for analyses of the test-particle
simulations in Section 3.2.

Fig. 4 plots the colormaps of the density (upper) and the magnetic
energy (lower) on the equatorial plane. The magnetic fields are
frozen in the differentially rotating fluid elements that fall to the
BH. This creates the spiral structure as seen in the figure. We can
also see that the fluctuation of the density is much smaller than
that of the magnetic field energy density. This implies that the fast
modes are a sub-dominant component in the MRI turbulence.

To clarify the importance of the modes of the MHD waves (fast,
slow, and Alfven), we evaluate the Pearson correlation coefficients
between the fluctuations of the density, δρ(R, θ,φ) = ρ − 〈ρ〉L,
and the magnetic energy, δB2(R, θ, φ) = B2 − 〈B2〉L. According
to the linear MHD wave theory, the fast mode has a positive
correlation, the slow mode has a negative correlation, and the Alfven
mode has no correlation. We evaluate the correlation coefficients
as a function of R and θ , and average over them with weights
associated with the area in the meridional plane. The resulting
coefficients indicate that the density and magnetic energy are weakly
anticorrelated: the value of the coefficient is −0.22 in the disc
region (|cos θ ! 0.45|) for run A. The lower resolution runs have
higher coefficients, i.e. the anticorrelations are weaker, but no run
has a positive correlation. Therefore, the fast modes do not play
an important role in this system. This result is natural in the sub-
Alfvenic and sub-sonic turbulence.

Finally, we discuss the azimuthal power spectra of the turbulence
(cf. Sorathia et al. 2012; Suzuki & Inutsuka 2014; see Parkin &
Bicknell 2013 for three-dimensional power spectra). We take the
Fourier transformation in the azimuthal direction,

Xm = 1√
2π

∫
X exp(−imφ)dφ, (13)

where m = kφR (kφ is the wavenumber in the φ direction). Then,
we take the average of the power spectrum over the disc region:

Pm =
∫

|Xm|2RdRdθ∫
RdRdθ

, (14)

where the integration region is set to be 0.1Rc ≤ R ≤ 0.6Rc and
|cos θ | ≤ 0.45. We plot the power spectra, mPm, for the magnetic

Figure 4. Colormaps in the equatorial plane for run A. The upper and lower
panels show the density and the magnetic energy density, respectively.
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Figure 3. Colormaps in the meridional plane for run A. Left: density on the φ = 0 plane. Center: magnetic energy density, B2/(8π ), on the φ = 0 plane. Right:
Azimuthally averaged Vφ , 〈Vφ〉L, on the R − φ plane. The white lines are iso-contours of 〈Vφ〉L.

Vbul, φ as the background velocity for analyses of the test-particle
simulations in Section 3.2.

Fig. 4 plots the colormaps of the density (upper) and the magnetic
energy (lower) on the equatorial plane. The magnetic fields are
frozen in the differentially rotating fluid elements that fall to the
BH. This creates the spiral structure as seen in the figure. We can
also see that the fluctuation of the density is much smaller than
that of the magnetic field energy density. This implies that the fast
modes are a sub-dominant component in the MRI turbulence.

To clarify the importance of the modes of the MHD waves (fast,
slow, and Alfven), we evaluate the Pearson correlation coefficients
between the fluctuations of the density, δρ(R, θ,φ) = ρ − 〈ρ〉L,
and the magnetic energy, δB2(R, θ, φ) = B2 − 〈B2〉L. According
to the linear MHD wave theory, the fast mode has a positive
correlation, the slow mode has a negative correlation, and the Alfven
mode has no correlation. We evaluate the correlation coefficients
as a function of R and θ , and average over them with weights
associated with the area in the meridional plane. The resulting
coefficients indicate that the density and magnetic energy are weakly
anticorrelated: the value of the coefficient is −0.22 in the disc
region (|cos θ ! 0.45|) for run A. The lower resolution runs have
higher coefficients, i.e. the anticorrelations are weaker, but no run
has a positive correlation. Therefore, the fast modes do not play
an important role in this system. This result is natural in the sub-
Alfvenic and sub-sonic turbulence.

Finally, we discuss the azimuthal power spectra of the turbulence
(cf. Sorathia et al. 2012; Suzuki & Inutsuka 2014; see Parkin &
Bicknell 2013 for three-dimensional power spectra). We take the
Fourier transformation in the azimuthal direction,

Xm = 1√
2π

∫
X exp(−imφ)dφ, (13)

where m = kφR (kφ is the wavenumber in the φ direction). Then,
we take the average of the power spectrum over the disc region:

Pm =
∫

|Xm|2RdRdθ∫
RdRdθ

, (14)

where the integration region is set to be 0.1Rc ≤ R ≤ 0.6Rc and
|cos θ | ≤ 0.45. We plot the power spectra, mPm, for the magnetic

Figure 4. Colormaps in the equatorial plane for run A. The upper and lower
panels show the density and the magnetic energy density, respectively.
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Figure 5. Power spectra for the magnetic fields in the azimuthal direction. The left-hand, middle, and right-hand panels show the power spectra for Br, Bθ ,
and Bφ , respectively. The solid, dashed, dotted, and dot-dashed lines are for runs A, B, C, and D, respectively.

where Rs = 2GM/c2 is the Schwarzschild radius, ṀEdd = LEdd/c
2

is the Eddington mass accretion rate (LEdd is the Eddington
luminosity), and χ and η are the scaling factors of the length
and the mass, respectively. The relation between η and den-
sity is ρc = ηṀEddTu/L3

u, so a higher η leads to a higher
density.

We choose the reference parameter set for the particle simu-
lations so as to be consistent with our assumptions: hot accre-
tion flows in LLAGNs with Newtonian gravity. In our MHD
simulations, mass accretion rate is written as Ṁ ∼ ṁsimMuT−1

u ,
where ṁsim ∼ 10−3 − 10−2 is the resulting mass accretion rate in
the MHD simulations. Then, the rescaled mass accretion rate is
represented as Ṁ = ηṁsimṀEdd. For η ! 10, this mass accre-
tion rate is in the hot accretion flow regime, i.e. Ṁ ! 0.1ṀEdd

(Narayan & Yi 1995; Xie & Yuan 2012). The scale factor for
the length, χ , should be large enough to be consistent with the
Newtonian gravity. For χ ≥ 20, the initial radius, Rini = 0.3Rc, is
larger than 6Rs = 2RISCO, where RISCO = 3Rs is the innermost
circular stable orbit (ISCO) for the Schwartzchild BH. Based
on the considerations above, we set the reference parameters
to χ = 50, η = 1, and M = 108 M$, which corresponds to
typical low-luminosity AGNs, such as Seyferts or low-ionization
nuclear emission-line regions (LINERs). This parameter set
leads to

Lu % 1.5 × 1015M8χ1.7cm (19)

Tu % 4.9 × 105M8χ
3/2
1.7 s, (20)

Mu % 6.9 × 1030M2
8 χ

3/2
1.7 η0g, (21)

where we use the notation Qx = 10x (unit for M is M$). The speed
of light is c % 10χ

1/2
1.7 LuT−1

u in this unit system. We use the MHD
data set of run A with T&c = 20π unless otherwise noted. The
Larmor radius and time-scale are rL % 1.0 × 1013M8χ1.7λini, 0.6 cm
and tL % 2.1 × 103M8χ1.7λini, 0.6 s, respectively.

3.2 Results of particle simulations

3.2.1 Orbits and momentum distribution

The upper and lower panels of Fig. 6 show orbits of the test particles
projected in the R − θ and R − φ planes, respectively. The particles
spread in all the directions, but the majority of the particles move
outward in the R direction rather than fall on to the BH or escape
to the vertical direction. The particles are likely to migrate to the
direction at which the magnetic field is weak, partially due to the
magnetic mirror force. The strong magnetic fields at the inner region
prevent the particles from falling to the BH. Also, the magnetic
fields at the high latitudes are not weak, compare to those at the
outer region (see Fig. 3). At the end of the simulation, 68 per cent
of all the escaping particles go out through the radial boundary with
|cos θ | ≤ 0.5 for the case with λini = 4. This fraction is higher for
lower λini, and vice versa for higher λini. Higher energy particles
can cross the magnetic field more easily, which may enhance the
vertical diffusion.

From the lower panel, we find that the particles mostly travel
along the φ direction, because the magnetic field is also directed
to the φ direction. Interestingly, the outward-going particles tend
to move the opposite direction to the background fluid. This arises
from the magnetic field configuration. The accretion flow creates the
spiral-shape magnetic fields as seen in Fig. 4. When the CR particles
stream along the field line outward, they counterrotate with respect
to the accretion flow.

The upper panel of Fig. 7 shows the momentum distribution in
each direction, dN/dpi (i = r, θ , φ) measured in the lab frame at time
t = 10tL, where tL = 2πεini/(ecBini) and Bini =

√
〈B2〉S at R = Rini.

The momentum distribution is anisotropic: there is a bulk rotational
motion. This is because the background fluid motion creates the
electric field that induces E × B drift.

We compute the momentum distribution in the fluid frame by
performing Lorentz transformation of the particle momenta. Since
Vφ dominates over the other component, we approximate the
background velocity to be

V bg = Vbul,φeφ, (22)
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Figure 3. Colormaps in the meridional plane for run A. Left: density on the φ = 0 plane. Center: magnetic energy density, B2/(8π ), on the φ = 0 plane. Right:
Azimuthally averaged Vφ , 〈Vφ〉L, on the R − φ plane. The white lines are iso-contours of 〈Vφ〉L.

Vbul, φ as the background velocity for analyses of the test-particle
simulations in Section 3.2.

Fig. 4 plots the colormaps of the density (upper) and the magnetic
energy (lower) on the equatorial plane. The magnetic fields are
frozen in the differentially rotating fluid elements that fall to the
BH. This creates the spiral structure as seen in the figure. We can
also see that the fluctuation of the density is much smaller than
that of the magnetic field energy density. This implies that the fast
modes are a sub-dominant component in the MRI turbulence.

To clarify the importance of the modes of the MHD waves (fast,
slow, and Alfven), we evaluate the Pearson correlation coefficients
between the fluctuations of the density, δρ(R, θ,φ) = ρ − 〈ρ〉L,
and the magnetic energy, δB2(R, θ, φ) = B2 − 〈B2〉L. According
to the linear MHD wave theory, the fast mode has a positive
correlation, the slow mode has a negative correlation, and the Alfven
mode has no correlation. We evaluate the correlation coefficients
as a function of R and θ , and average over them with weights
associated with the area in the meridional plane. The resulting
coefficients indicate that the density and magnetic energy are weakly
anticorrelated: the value of the coefficient is −0.22 in the disc
region (|cos θ ! 0.45|) for run A. The lower resolution runs have
higher coefficients, i.e. the anticorrelations are weaker, but no run
has a positive correlation. Therefore, the fast modes do not play
an important role in this system. This result is natural in the sub-
Alfvenic and sub-sonic turbulence.

Finally, we discuss the azimuthal power spectra of the turbulence
(cf. Sorathia et al. 2012; Suzuki & Inutsuka 2014; see Parkin &
Bicknell 2013 for three-dimensional power spectra). We take the
Fourier transformation in the azimuthal direction,

Xm = 1√
2π

∫
X exp(−imφ)dφ, (13)

where m = kφR (kφ is the wavenumber in the φ direction). Then,
we take the average of the power spectrum over the disc region:

Pm =
∫

|Xm|2RdRdθ∫
RdRdθ

, (14)

where the integration region is set to be 0.1Rc ≤ R ≤ 0.6Rc and
|cos θ | ≤ 0.45. We plot the power spectra, mPm, for the magnetic

Figure 4. Colormaps in the equatorial plane for run A. The upper and lower
panels show the density and the magnetic energy density, respectively.
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Figure 3. Colormaps in the meridional plane for run A. Left: density on the φ = 0 plane. Center: magnetic energy density, B2/(8π ), on the φ = 0 plane. Right:
Azimuthally averaged Vφ , 〈Vφ〉L, on the R − φ plane. The white lines are iso-contours of 〈Vφ〉L.

Vbul, φ as the background velocity for analyses of the test-particle
simulations in Section 3.2.

Fig. 4 plots the colormaps of the density (upper) and the magnetic
energy (lower) on the equatorial plane. The magnetic fields are
frozen in the differentially rotating fluid elements that fall to the
BH. This creates the spiral structure as seen in the figure. We can
also see that the fluctuation of the density is much smaller than
that of the magnetic field energy density. This implies that the fast
modes are a sub-dominant component in the MRI turbulence.

To clarify the importance of the modes of the MHD waves (fast,
slow, and Alfven), we evaluate the Pearson correlation coefficients
between the fluctuations of the density, δρ(R, θ,φ) = ρ − 〈ρ〉L,
and the magnetic energy, δB2(R, θ, φ) = B2 − 〈B2〉L. According
to the linear MHD wave theory, the fast mode has a positive
correlation, the slow mode has a negative correlation, and the Alfven
mode has no correlation. We evaluate the correlation coefficients
as a function of R and θ , and average over them with weights
associated with the area in the meridional plane. The resulting
coefficients indicate that the density and magnetic energy are weakly
anticorrelated: the value of the coefficient is −0.22 in the disc
region (|cos θ ! 0.45|) for run A. The lower resolution runs have
higher coefficients, i.e. the anticorrelations are weaker, but no run
has a positive correlation. Therefore, the fast modes do not play
an important role in this system. This result is natural in the sub-
Alfvenic and sub-sonic turbulence.

Finally, we discuss the azimuthal power spectra of the turbulence
(cf. Sorathia et al. 2012; Suzuki & Inutsuka 2014; see Parkin &
Bicknell 2013 for three-dimensional power spectra). We take the
Fourier transformation in the azimuthal direction,

Xm = 1√
2π

∫
X exp(−imφ)dφ, (13)

where m = kφR (kφ is the wavenumber in the φ direction). Then,
we take the average of the power spectrum over the disc region:

Pm =
∫

|Xm|2RdRdθ∫
RdRdθ

, (14)

where the integration region is set to be 0.1Rc ≤ R ≤ 0.6Rc and
|cos θ | ≤ 0.45. We plot the power spectra, mPm, for the magnetic

Figure 4. Colormaps in the equatorial plane for run A. The upper and lower
panels show the density and the magnetic energy density, respectively.
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Higher resolution & Higher order accuracy simulations are necessary 
in order to understand particle acceleration in MHD scales
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- PIC simulations demonstrated that the magnetic reconnection process inject particles  
- MHD + test particle simulations demonstrate the diffusion nature of 
the stochastic particle acceleration process in MHD turbulence 
- Future higher resolution & higher order accuracy simulations are necessary  
to reveal the maximum achievable energy of CRs in accretion flows
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Figure 10. Parameter dependence of Dε . The upper panel shows the energy
dependence of Dε with various resolutions. The lower panel depicts the
dependence on χ with various η and M. We use λini = 4 and the MHD data
set of run A. We can see Dε,FTB is consistent with the simulation results
within a factor of 2. Dε,TTD is also consistent within a factor of 3.

We also estimate the values of Dε based on the above equation,
and the results agree with those obtained by σ 2

ε within a factor of 2
for λini ≤ 8 as shown in the Appendix, implying the improvement
compared to those based on equation (25). For the models with
λini ! 8, the anisotropy is large enough to affect the momentum
diffusion, and the agreement becomes worse. However, this does
not affect the discussion on the maximum energy in Section 4,
because in reality, high-energy particles escape from the system
before they attain the energy corresponding to λini ! 8.

3.2.3 Behaviour in configuration space

First, we discuss the displacement in R direction, which is directly
related to the escape process. We estimate time evolutions of the
mean and the variance of the radial displacement:

µδR = 1
Nactv

∑

j

δRj , (31)

σ 2
δR = 1

Nactv

∑

j

δR2
j − µ2

δR, (32)

where δRj = Rj − Rini is the radial displacement of each particle
and Nactv is the number of the confined particles. Summation is
performed over the particles confined in the computational region.
µδR represents the bulk motion of CR particles, while σ 2

δR expresses
the diffusive motion.

Figure 11. Time evolution of the mean and variance of the radial displace-
ment. The thin and thick lines depict µ2

δR and σ 2
δR for λini = 2 (solid), 4

(dashed), and 8 (dot-dashed), respectively. The dotted lines indicate the time
dependence of σ 2

δR .

Figure 12. Time evolution of the variance of the radial displacement (thick
lines) and the escape fraction (thin lines) for λini = 4 with the various
computational regions shown in the legend.

We show µ2
δR and σ 2

δR for the cases with various energies (λini =
2, 4, and 8) in Fig. 11. In the early phase, the diffusive motion is
more efficient than the bulk CR motion. From the figure, we see that
the stochastic behaviour of CRs in configuration space cannot be de-
scribed as a usual diffusion. If the particles obey the usual diffusion,
σ 2

δR ∝ t2 at the beginning, and σ 2
δR ∝ t after scattering time-scale

(e.g. Casse, Lemoine & Pelletier 2002; Cohet & Marcowith 2016).
In our simulation, σ 2

δR initially increases with t2. After about a half of
the Larmor time-scale, we see a transition to σ 2

δR ∝ t1.4, and finally,
σ 2

δR becomes flat at the time when the escape fraction becomes non-
negligible. We analyse the data with various computational regions,
and find that the behaviour is essentially the same; σ 2

δR rapidly
increases initially, and it is flattened when the escape becomes
effective, as seen in Fig. 12. This trend is similar for the cases
with different parameter sets and other sets of the snapshot data of
the MHD simulations. Thus, the radial variance is approximately
written as

σ 2
δR ∼ r2

L

(
ζ t

tL

)ξ

, (33)
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This is an erratum to the paper ‘Acceleration and escape processes
of high-energy particles in turbulence inside hot accretion flows’
(DOI: https://doi.org/10.1093/mnras/stz329), which was published
in MNRAS, 485, 163–178 (2019). In Fig. 4, we mistakenly
plotted the quantities using the wrong axes, causing the spiral
shape inconsistent with that in fig. 6. The correct plots are shown
here. The other results are unaffected, and the conclusions remain
unchanged.
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Figure 4. Colormaps in the equatorial plane for run A. The upper and lower
panels show the density and the magnetic energy density, respectively.
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