3D MHD SIMULATION TO REVEAL ANGULAR MOMENTUM TRANSPORT IN AN ACCRETION DISK

Mami MACHIDA (NAOJ)

Colloaborator

Tomohisa KAWASHIMA (Univ. Tokyo), Yuki KUDOH (Kagoshima Univ.) Yosuke MATSUMOTO, Ryoji MATSUMOTO (Chiba Univ.)

CONTENTS OF THIS TALK

- Introduction
 - Nature around the SgrA*
 - Importance of an accretion disk
 - Magneto-Rotational Instability
- Numerical Model
- Results
 - 3D structure of the accretion flow
 - Time evolution of the accretion flow
 - Entropy spiral structure
- Discussion
 - Origin of the spiral pattern
 - Correlation between the mass accretion rate and spiral arms
 - Current distribution in the spiral structures

CURRENT ACTIVITY OF SGR A*

Srg $A^* \sim$ The central super massive black hole in the Milky Way

Mass : $4 \times 10^{6} M_{sun}$ Accretion rate : $10^{-7} \sim 9 M_{Edd}$

According to the Low-activities, accretion flow of Sgr A* seems to be MAD or slow spin SANE-like plasma. (Ressler + 2020, Thuneto + 2020b).

PAST ACTIVITIES OF SGR A*

eROSITA found the X-ray bubbles surrounding the Fermi bubble

The proposed mechanism of the Fermi bubble

- Starburst
- Past activities of Sgr A*

According to the correlation between Fermi bubble and eROSITA bubble, they conclude that both bubbles are formed by past activities of Sgr A*.

In the past, standard accretion process becomes important – such as RIAF/SANE evolution.

THE ORIGIN OF THE ANGULAR MOMENTUM TRANSPORT

High energy activities such as jets and flares

~Gravitational energy of the black hole through an accretion disk

Accretion disk ~ Differential rotation →Require the mechanism of angular momentum transport

Origin of the viscosity =Magnetic turbulence made by Magneto-Rotational Instability Numerical results show resolution dependence.

RESOLUTION STUDY OF SATURATION LEVEL

High resolution study

• Firster Mass accretion ⇒Amplification of smallscale turbulence.

Anti-correlation of the saturation levels of magnetic energy
⇒ Amplified magnetic fields are dissipated in the small scale.

PURPOSE OF THIS TALK

We study the dependence of the disk structure on the resolution in a quasi-steady state (~30 rotational period at pressure maximum).

CANS+

--Coordinated Astronomical Numerical Software +

(Matsumoto et al. 2019)

•HLLD method (Miyoshi and Kusano 2005)

The *third order* Runge-Kutta method for time integration
The fifth order spacial integration by MP5 method

• div B cleaning by 9 wave method

 \Rightarrow azimuthal 64 meshes \Rightarrow 160 meshes of 2nd order results

INITIAL SET UP AND BASIC EQUATIONS

Basic equations

$$\begin{split} \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \boldsymbol{v}) &= 0, & \text{Pressure} \\ \frac{\partial \rho \boldsymbol{v}}{\partial t} + \nabla \cdot (\rho \boldsymbol{v} \boldsymbol{v} + p_t \boldsymbol{I} - \boldsymbol{B} \boldsymbol{B}) &= \rho \boldsymbol{g}, & \text{Heat radius} \\ \frac{\partial \boldsymbol{B}}{\partial t} + \nabla \cdot (\boldsymbol{v} \boldsymbol{B} - \boldsymbol{B} \boldsymbol{v} + \psi \boldsymbol{I}) &= -\nabla \times (\eta \boldsymbol{j}), \\ \frac{\partial e}{\partial t} + \nabla \cdot ((e + p_t) \boldsymbol{v} - \boldsymbol{B}(\boldsymbol{v} \cdot \boldsymbol{B})) &= -\nabla \cdot (\eta \boldsymbol{j} \times \boldsymbol{B}) + \rho \boldsymbol{v} \cdot \boldsymbol{g}, \\ \frac{\partial \psi}{\partial t} + c_h^2 \nabla \cdot \boldsymbol{B} &= -\frac{c_h^2}{c_p^2} \psi, & \text{Uniformation} \end{split}$$

Parameter

Pressure maximum	$r_0 = 40 r_g$
Angular momentum	$\mathbf{L} = \mathbf{L}_0$ constant
Plasma β	$\beta \equiv P_{gas}/P_{mag} = 100 \text{ at } r = r_0$
Heat ratio	γ=5/3
Sound speed	$c_s = 0.01 c$

Length	rg	4.0x10 ⁶ (M/10M _{sun})cm
Velocity	с	2.99x10 ¹⁰ cm s ⁻¹
Time	t ₀	$10^{-4}(M/10M_{sun})$ sec
Temperature	T ₀	1.1x10 ¹³ K

Number of grids

 $(N_r, N_z) = (774, 774)$ N_o=64, 128 ,512, 1024

Here, we show the results of HM512 and LM64.

GLOBAL STRUCTURE

Blue surface : density, Green surface: Outflow velocity (Vz>0)

OUTFLOW FEATURE FROM THE BLACK HOLE

Near the center, vertical magnetic fields are formed with the outflowing and infalling flows.

TIME EVOLUTION OF ACCRETION RATE

High resolution model shows firster growth of magnetic energy by MRI. It leads firster mass accretion.

Saturation values plasma β : HM512 ~5, LM64~2 AM. Transport α : HM512~ 0.07, LM64~0.15

Local turbulence is fully developed, but it does not lead global accretion.

Angular momentum transport rate

ANGULAR MOMENTUM TRANSPORT RATE ~MAXWELL STRESS DISTRIBUTION

(Left) Radial profile of the angular momentum transport rate. Maxwell stress and gas pressure is averaged in the azimuthal direction.

(Middle and Right) The r-z slice of the Maxwell stress.

SPIRAL DISCONTINUITIES

Spiral Structure:

HM: Sharp discontinuity LM: Smooth

Boundary : the direction of radial velocity changes

 \Rightarrow Inflow and outflow region clearly separated.

MOMENTUM DISTRIBUTION (RZ-PLANE)

Both plots show the clear discontinuities around $r\sim4$, 6, 12 and 16 whose height are roughly $4\sim6$ rg.

What is the origin of these discontinuities? Can we observe the standing shock in the MRI turbulent disk?

VOLUME RENDERING IMAGE OF ENTROPY

Entropy discontinuities are formed along the spiral structure observed in the density, velocity and pressure

ENTROPY AND DENSITY DISTRIBUTION ACROSS THE DISCONTINUITY

Inside the high entropy spiral, density suddenly decreases.

 \Rightarrow Discontinuity does not form by Spiral Shock.

SPIRAL STRUCTURE ALONG THE MAGNETIC FIELDS

Entropy spirals are aligned with the magnetic fields. The direction of radial velocity becomes opposite across the spiral discontinuities.

CORRELATION BETWEEN SPIRAL STRUCTURE AND MASS ACCRETION RATE

SCHEMATIC DRAWING OF SPIRAL ARMS

Small scale turbulent edges are formed.

radial scale : 0.3-0.5 rs, azimuthal scale ~5rs, vertical scale ~ 1-2 rs

- \rightarrow turbulent energy > magnetic tension \Rightarrow dissipate turbulent energy < magnetic tension
 - \Rightarrow Elongated by rotational motion \Rightarrow Spiral arms are formed.

Heating by Ohmic dissipation \Rightarrow Entropy walls are formed.

SUMMARY

- We investigate the resolution study for MRI in the accretion disk.
- According to the higher order accuracy of spacial resolution code, CANS+, we can resolve the global spiral structure inside the magnetically turbulent accretion disk.
- Spiral arms made by magnetic fields guide the mass accretion.
- Strong current sheets are formed in the spiral arm. The nonthermal particles can be accelerated around

THANK YOU FOR YOUR ATTENTION!