EAVN observations toward Sgr A*

:The intrinsic structure of Sgr A* at 13 and 7 mm

Ilje Cho (UST/KASI), on behalf of the KaVA/EAVN AGN SWG, EHT MWL WG

Our Galactic Center: Sagittarius A* (Sgr A*)

Thanks to its proximity, we can directly study the environment of vicinity of SMBH.

(Bardeen 1973; Luminet 1979; (Johnson+2015; Fish+ 2016; Shen+ 2005; Broderick & Loeb 2006) Chael+ 2016; Broderick+ 2016)

Our Galactic Center: Sagittarius A* (Sgr A*)

<u>Flux densities at cm~sub-mm wavelengths</u>

Our Galactic Center: Sagittarius A* (Sgr A*)

Long-lived Question: What is the origin of radio emission ?

Time delay of flux increase depending on frequency (Brinkerink+ 2015)

<u>Sgr A* together with scattering effects</u>

Sgr A* together with scattering effects

- Density inhomogenities in the ionized ISM makes phase change, $\delta\phi$
 - Single thin phase screen, $\phi(r)$, and its power spectrum, $Q(q) \propto |q|^{-\beta}$ (where $r_{in} < r < r_{out}$)
 - Phase structure function, $D_{\phi} \equiv \langle [\phi(r'+r) \phi(r)]^2
 angle \propto \lambda^2$
- For baseline lengths (b), - $b < (1+M)r_{in}$: anisotropic Gaussian blurring ($\theta_{scatt} \propto \lambda^2$) - $b > (1+M)r_{in}$: non-Gaussian ($\theta_{scatt} \propto \lambda^{1+2/\alpha}$) (where $M \equiv D/R$)
- Scattering model parameters: - $\theta_{maj}, \theta_{min}, \phi_{PA}$ (Gaussian broadening) - α, r_{in}, r_{out} (r_{out} can be assumed as ~infinity) - J
 - Based on, - Psaltis+18,
 - Johnson+18,
 - Issaoun+19

<u>Historical VLBI sizes of Sgr A*: modeling with a single Gaussian</u>

Discovery and lambda² relation

- Balick & Brown (1974): discovery of Sgr A* with the interferometric observations at 11 and 3.7 cm
- Davies, Walsh & Booth (1976): lambda² relation of the measured size (up to ~2 cm)

$$(\theta_{meas})^2 = (\theta_{scat})^2 + (\theta_{int})^2$$

$$\theta_{scat} \propto \lambda^{\zeta} (\zeta \approx 2)$$

<u> Historical VLBI sizes of Sgr A*: modeling with a single Gaussian</u>

East-West elongated structure

- At 3.6 cm (Lo et al. 1985), 1.3 cm (axial ratio~0.5; Alberdi et al. 1993), and 0.7 cm (axial ratio~0.73; Bower & Backer 1998)
- Marginal detection of intrinsic structure (i.e. observed size is larger than the extrapolated lambda²)
- At 0.7, 0.3 and 0.14 cm (Krichbaum et al. 1998; Lo et al. 1998; Doeleman et al. 2001)
- 2-dimensional lambda² relation (Lo et al. 1998): coefficients (i.e., scatter sizes at 1 cm in mas) are 1.43 and 0.76 for major and minor axis, respectively.

<u>Historical VLBI sizes of Sgr A*: modeling with a single Gaussian</u>

East-West elongated structure

At 3.6 cm (Lo et al. 1985), 1.3 cm (axial ratio~0.5; Alberdi et al. 1993), and 0.7 cm (axial ratio~0.73; Bower & Backer 1998)

Marginal detection of intrinsic structure (i.e. observed size is larger than the extrapolated lambda²)

- At 0.7, 0.3 and 0.14 cm (Krichbaum et al. 1998; Lo et al. 1998; Doeleman et al. 2001)
- 2-dimensional lambda² relation (Lo et al. 1998): coefficients (i.e., scatter sizes at 1 cm in mas) are 1.43 and 0.76 for major and minor axis, respectively.

Intrinsic size of Sgr A* by deblurring the scattering kernel model

<u>Beyond a single Gaussian model: intrinsic, or refractive feature ?</u>

<u> Multi-wavelength (MWL) campaign for Sgr A* in 2017 April</u>

2017 EHT window

Array	Date (2017)	$\lambda({ m cm})$	References
EAVN	Apr 03	1.35	This work
EAVN	Apr 04	0.70	This work
GMVA+ALMA	Apr 03	0.35	Issaoun et al. (2019
EHT	Apr 05-11	0.13	_

Table 1. EAVN and related observations for Sgr A* in 2017April.

EAVN observations in 2017 April

<u> Multi-wavelength (MWL) campaign for Sgr A* in 2017 April</u>

2017 EHT window

Array	Date (2017)	$\lambda({ m cm})$	References
EAVN	Apr 03	1.35	This work
EAVN	Apr 04	0.70	This work
GMVA+ALMA	Apr 03	0.35	Issaoun et al. (2019
EHT	Apr 05-11	0.13	_

Table 1. EAVN and related observations for Sgr A* in 2017April.

EAVN observations in 2017 April

- The observations towards Sgr A* have been conducted as a part of the KaVA/EAVN Large Program.
- The observing wavelengths are 1.3 and 0.7 cm, with 256 MHz total bandwidth.
- 8 telescopes (7 KaVA + Tianma) have successfully detected Sgr A* at both wavelengths.

<u>A single Gaussian assumption</u>

* Non-zero closure phases (CP) are not found for Sgr A*, so that its structure can be reasonably assumed as a point or symmetric (e.g., single Gaussian).

"Observed"

Self-calibration results & Images

Visibility amplitudes

NRAO530 ($\lambda = 1.3 \text{ cm}$) NRAO530 ($\lambda = 0.7$ cm) 1.75 -2.5 3 1.50 Intensity (Jy/beam) 1.25 end 1.00 (Jy/beam) Relative Dec (mas) 2 0.5 0.25 2 Ó -1-2-33 2 1 0 -1 -2 -3Relative RA (mas) Relative RA (mas) Sgr A^{*} (λ = 0.7 cm) Sgr A^{*} (λ = 1.3 cm) 0.30 0.5 3 0.25 2 0.4 intensity (Jy/beam) Relative Dec (mas) 0.20 (Jy/beam) 0 0.1

0.05

-4

2

Ó

Relative RA (mas)

-2

-4

-2

2

0

Relative RA (mas)

images

Observed & Intrinsic structure of Sqr A*

Minor size (uas)

1300

22 GHz 43 GHz Observed size (1.3 cm) Intrinsic size (1.3 cm) Observed size (0.7 cm) Intrinsic size (0.7 cm) 1500 300 * Gfit 440 1000 SMILI CA 1450 * 250 Ħ Johnson+18 (interp) 800 Astatio 1.0 Akratio=0.5 1400 200 600 Avratio=0.5 1350 150 Gfit SMILI 400 AXIALIO 100 CA 320 Johnson+18 Ħ Bower+14 1250+<u>-</u> 2500 2550 2600 2650 2700 2750 200 300 ± 650 5Q. 400 600 800 1000 1200 700 750 800 200 250 300 350 150 400 Major axis (uas) Major axis (uas) Major axis (uas) Major axis (uas)

		Flux	Observed (i.e., scattered) structure				Intrinsic structure			
λ (cm)	Method	S _v ^{tot} (Jy)	$\theta_{\rm maj}^{\rm obs}$ (μ as)	θ_{\min}^{obs} (µas)	r ^{obs}	$\theta_{\rm PA}^{\rm obs}$ (deg)	$\theta_{\rm maj}^{\rm int}$ (µas)	θ_{\min}^{int} (µas)	r ^{int}	$\theta_{\rm PA}^{\rm int}$ (deg)
1.349	Gfit/Amp	1.07 ± 0.11	2618.3 ± 33.8	1434.8 ± 13.3	$1.82 \!\pm\! 0.02$	$82.6\!\pm\!0.5$	$813.7\substack{+207.9\\-107.7}$	$652.9^{+34.5}_{-167.2}$	$1.25\substack{+0.32 \\ -0.17}$	$95.6^{+16.8}_{-12.3}$
	SMILI/Amp	1.04 ± 0.10	2592.9 ± 33.8	$1389.1\substack{+12.4 \\ -12.6}$	1.87 ± 0.02	$82.0\!\pm\!0.5$	$720.9\substack{+238.3\\-102.7}$	$559.4^{+62.0}_{-115.9}$	$1.29\substack{+0.42 \\ -0.19}$	$81.6\substack{+18.0 \\ -10.3}$
	CA	-	2592.7 ± 35.1	$1392.3\substack{+30.6\\-27.6}$	$1.86\substack{+0.02\\-0.03}$	82.6 ± 0.7	$736.7^{+261.3}_{-105.8}$	$564.9^{+121.2}_{-99.3}$	$1.33\substack{+0.44 \\ -0.21}$	$95.0\substack{+26.6 \\ -15.0}$
0.695	Gfit/Amp	1.35 ± 0.14	715.7 ± 25.5	414.7 ± 10.6	1.73 ± 0.06	84.2 ± 0.5	$295.2^{+88.4}_{-63.0}$	$227.8^{+39.7}_{-18.2}$	$1.30\substack{+0.38 \\ -0.28}$	109.6 ± 6.3
	SMILI/Amp	$1.30\!\pm\!0.13$	727.3 ± 25.5	425.1 ± 10.1	1.71 ± 0.06	85.7 ± 0.5	$331.2^{+67.8}_{-63.0}$	$234.8\substack{+29.2\\-23.7}$	$1.41\substack{+0.29 \\ -0.27}$	112.5 ± 4.0
	CA	-	717.5 ± 25.5	402.9 ± 13.5	1.78 ± 0.06	$83.0\!\pm\!0.6$	$290.5^{+82.8}_{-105.2}$	$214.9^{+36.3}_{-75.3}$	$1.36\substack{+0.37 \\ -0.50}$	$95.1^{+5.1}_{-7.6}$

Constraints on the dominant emission models

<u>Constraints on the dominant emission models</u>

* In the simulation with RIAF+Keplerian shell model, the accretion flow can also reproduce the measured size and axial ratio.

* However, the non-thermal electron components become important and the small viewing angle is also preferred (T.Kawashima et al. in prep.).

<u>Summary</u>

* The intrinsic structures of Sgr A* at 13 and 7 mm wavelengths have been found as **a single, isotropic Gaussian** shape.

* A simple isotropic model which the size is **linearly proportional to the observing wavelengths** well describes the results. This implies the stratified, self-absorbed geometry of Sgr A*.

* Both a jet and accretion flow models can explain our results, but the **small viewing angle** is favored at both cases. This is consistent with the previous results from the GRAVITY Collaboration+2018.

* The quasi-simultaneous VLBI observations at lower frequencies (i.e., 22, 43, and 86 GHz) provide a **pre-imaging consideration** of Sgr A* at 230 GHz.