銀河進化の解明に向けた磁場・宇宙線が 駆動する銀河風についての理論研究

1. 名古屋大学

Circum-Galactic Medium (CGM)

Circum-Galactic Medium (CGM)

How much does CGM contain available gas?

The CGM contains hot, highly ionized gas with a mass of $\sim 10^{10} - 10^{12} \ M_{sun} \, !$

17, 19; Nakashima+18, etc...)

CGM of Milky Way

Miller & Bregman 15

OVII & O VIII emission lines are also observed.

Problems of CGM

Metal transfer to the CGM

How the metals are transferred to a scale height of > 100 kpc? (Supernovae make a fountain flow with a scale height of \sim kpc, Shapiro & Field 76)

\rightarrow Galactic wind may be required.

Cooling time of O_{VI} gas < 0.1 Gyr (e.g. Faerman+17, 19)</p>

If the gas is really cooled, our galaxy would suffer a drastic mass accretion (like a galactic fountain flow).

Circum-Galactic Medium (CGM)

How much does CGM contain available gas?

The CGM contains hot, highly ionized gas with a mass of $\sim 10^{10} - 10^{12} \ M_{sun} \, !$

Circum-Galactic Medium (CGM)

- 1. Observations suggest that the CGM contains a sufficient gas to maintain the Galactic star formation.
- 2. From the cooling time of gas, we expect an accretion flow of the CGM gas, but it is in conflict to the current picture of MW.

3. We should study what mechanisms control the mass exchange between the galactic disk and CGM.

As a first step, we study the Galactic wind properties.

Galactic Wind: Previous studies

author	method	CR spatial diffusion	Wave generation	Wave damping	gas cooling	galaxy rotation	Notes
Breitschwerd t+91	analytic	No	Yes	No	No	No	Standard model
Zirakashvili+ 96	analytic	Yes	Yes	Yes	No	Yes	w B-field high T
Everett+08	analytic	No	Yes	Yes	No	No	Compared with X-ray obs.
Recchia+16	analytic	Yes	Yes	Yes	No	No	w CR spectra
Girichidis+18	Numerical	Yes	No	No	Yes	No	local box = 0
Dashyan & Dubois 20	Numerical	Yes	Yes	No	Yes	Yes	Global ≠ 0
Hopkins+ 20	Numerical	Yes	Yes	Yes	Yes	Yes	FIRE simulation

analytic :

Only Z > 1 kpc considered

 $10^5 - 10^6$ K gas at ~ 100 kpc scale due to the wave dissipation

Numerical:

Solve within a scale height of \sim kpc, simulation time is $\sim 0.1~\text{Gyr}$

Galactic Wind: Previous studies

author	method	CR spatial diffusion	Wave generation	Wave damping	gas cooling	galaxy rotation	Notes	
Breitschwerd t+91	analytic	No	Yes	No	No	No	Standard model	
Zirakashvili+ 96	analytic	Yes	Yes	Yes	No	Yes	w B-field high T	
Everett+08	analytic	No	Yes	Yes	No	No	Compared with X-ray obs.	
Recchia+16	analytic	Yes	Yes	Yes	No	No	w CR spectra	
Girichidis+18	Numerical	Yes	We study the galactic wind = 0					
Dashyan & Dubois 20	Numerical	Yes	with radiative cooling.					
Hopkins+ 20	Numerical	Yes	Yes	Yes	Yes	Yes	FIRE simulation	

analytic :

Only Z > 1 kpc considered

 10^5-10^6 K gas at ~ 100 kpc scale due to the wave dissipation

Numerical:

Solve within a scale height of \sim kpc, simulation time is $\sim 0.1~\text{Gyr}$

Standard Model (Breitschwerdt+91)

Model description :

The galactic fountain flow is driven at a scale height of several kpc. The hot, tenuous gas is pushed by cosmic-rays, and eventually escaping as a galactic wind.

*Breitschwerdt+91 extended the pioneering work by Ipavich 75, and estimated that the mass loss rate due to the wind is $~\sim 1~M_{sun}/yr.$

Standard Model (Breitschwerdt+91)

B-field geometry $A(z) = A_0 \left[1 + \left(\frac{z}{Z_0}\right)^2 \right]$

We follow this model description and B-field geometry.

Basic Equations

$$\begin{aligned} \frac{d}{dz}(\rho uA) &= 0\\ \rho u \frac{du}{dz} &= -\frac{d}{dz}(p_g + p_{cr} + p_w) - \rho \frac{d\Phi}{dz}\\ \frac{1}{A} \frac{d}{dz} \left[A \left\{ \rho u \left(\frac{1}{2} u^2 + h_g \right) \right\} \right] &= -\rho u \frac{d\Phi}{dz} - u \frac{dp_{cr}}{dz} - u \frac{dp_w}{dz} + n^2 (\Gamma - \Lambda) - L_w\\ \frac{1}{A} \frac{d}{dz} \left[A \left\{ \frac{\gamma_c}{\gamma_c - 1} (u + V_A) p_{cr} - \frac{1}{\gamma_c - 1} \kappa \frac{dp_{cr}}{ds} \right\} \right] &= (u + V_A) \frac{dp_{cr}}{dz} \quad \text{CR transport eq.}\\ \frac{1}{A} \frac{d}{dz} \left[A \left\{ \left(\frac{3}{2} u + V_A \right) 2p_w \right\} \right] &= u \frac{dp_w}{dz} - V_A \frac{dp_{cr}}{dz} + L_w \quad \text{Wave energy eq. (Dewar 70)} \end{aligned}$$

$$BA = \text{const}$$

$$p_w \equiv \frac{\langle (\delta B)^2 \rangle}{8\pi}, \ L_w \equiv V_A \frac{dp_{cr}}{dz}, \ \kappa = 3 \times 10^{28} \text{ cm}^2/\text{s} \left(\frac{p_M/p_w}{10^6}\right) \left(\frac{B}{1\,\mu\text{G}}\right)^{-1}, \ p_M \equiv \frac{B^2}{8\pi}$$

$$\frac{d^2 \ln p_{cr}}{dz^2} = \left(\frac{d \ln p_{cr}}{dz}\right)^2 + \left(\frac{u + V_A}{\kappa} - \frac{A'}{A} - \frac{\kappa'}{\kappa}\right) \frac{d \ln p_{cr}}{dz} + \frac{\gamma_c (u + V_A/2)}{\kappa} \left(\frac{u'}{u} + \frac{A'}{A}\right)$$

Basic equations: (MHD) + (cosmic-ray) + (Alfven wave excited by CRs) *Contributions of mean B-field are vanished because we consider a flow along the mean field.

Wind Equation

$$\begin{split} \underbrace{\frac{u'}{u} = \frac{A'}{A} \frac{C_*^2 - V_G^2}{u^2 - C_*^2}}_{Q^2 - C_*^2} \text{ (effective) Trans-sonic point: } u^2 = C_*^2 = V_G^2}_{Q^2 = C_*^2 = V_G^2} \\ C_*^2 &\equiv C_g^2 + \frac{M_A + 1}{M_A + 1 - D/V_A} C_{cr}^2 + C_w^2}{M_A + 1 - D/V_A} C_{cr}^2 + C_w^2} \\ V_G^2 &\equiv \frac{A'}{A'} \left[\frac{d\Phi}{dz} + \frac{\gamma_g - 1}{\rho u} n^2 (\Gamma - \Lambda) + \frac{1}{2(u + V_A)} \frac{L_w}{\rho} \right] \\ C_g^2 &\equiv \frac{\gamma_g p_g}{\rho} \\ C_{cr}^2 &\equiv \left(\frac{M_A + 1/2}{M_A + 1} \right)^2 \frac{\gamma_{cr} p_{cr}}{\rho} \\ C_w^2 &\equiv \frac{3M_A + 1}{2(M_A + 1)} \frac{p_w}{\rho} \\ D &\equiv \frac{1}{p'_{cr}} \frac{1}{A} \frac{d}{dz} (A \kappa p'_{cr}) \\ D &\equiv \frac{1}{p'_{cr}} \frac{1}{A} \frac{d}{dz} (A \kappa p'_{cr}) \\ A(z) &= A_0 \left[1 + \left(\frac{z}{Z_0} \right)^2 \right] \end{split}$$
Stational Out Flow Solution:

Boundary Condition

we seek the wind solution by changing the initial velocity u_0 . **X** The CR diffusion is omitted for simplicity ($\kappa = 0$).

Adiabatic Wind

Wave dissipation: $L_w = 0$ Radiative cooling: $n^2(\Gamma - \Lambda) = 0$

The gas temperature is too low to exist O_{VI} .

 O_{VI} absorption line $\rightarrow T_{ionized} \sim 3 \times 10^5 \text{ K}, \text{ N}_{OVI} \sim 10^{14} \text{ cm}^{-2}$

Effects of Wave dissipation

Wave dissipation: $L_w = V_A(dp_{cr}/dz)$ Radiative cooling: $n^2(\Gamma - \Lambda) = 0$

The wave dissipation leads to a high temperature gas to allow existing of O_{VI} . O_{VI} absorption line

 \rightarrow T_{ionized} ~ 3 x 10⁵ K, N_{OVI} ~ 10¹⁴ cm⁻²

Effects of radiative cooling

Wave dissipation: $L_w = V_A(dp_{cr}/dz)$ Radiative cooling: $n^2(\Gamma-\Lambda) =$ (collisional ionization equilibrium)

If we consider the collisional ionization equilibrium cooling function, there is no wind solution.

The wind is tenuous ($\sim 10^{-3}$ /cc) gas.

We should consider the photoionization and delayed recombination that may suppress the cooling rate.

We should explain the observed $N_{OVI} \sim 10^{14} \text{ cm}^{-2}$ simultaneously.

$$\begin{bmatrix} t_{\rm rec} \sim \frac{1}{nR_{\rm rec}} \sim 0.1 \,\,{\rm Gyr} \left(\frac{n}{10^{-3} \,\,{\rm cm}^{-3}}\right)^{-1} \left(\frac{R_{\rm rec}}{10^{-13} \,\,{\rm cm}^{3} \,\,{\rm s}^{-1}}\right)^{-1} \\ t_{\rm dyn} \sim \frac{L}{u} \sim 0.1 \,\,{\rm Gyr} \left(\frac{u}{10 \,\,{\rm km/s}}\right)^{-1} \left(\frac{L}{1 \,\,{\rm kpc}}\right)$$

Effects of radiative cooling

Wave dissipation: $L_w = V_A(dp_{cr}/dz)$ Radiative cooling: $n^2(\Gamma - \Lambda) = (\text{collisional equilibrium}) \times 0.1$

If we suppress the cooling function by a tenth, there is wind solution.

Effects of radiative cooling

Wave dissipation: $L_w = V_A(dp_{cr}/dz)$ Radiative cooling: $n^2(\Gamma-\Lambda) = (\text{collisional equilibrium}) \times 0.1$

$$t_{\rm dyn} \sim \frac{L}{u} \sim 0.1 \; \text{Gyr} \left(\frac{u}{10 \text{ km/s}}\right)^{-1} \left(\frac{L}{1 \text{ kpc}}\right) \qquad \Lambda \sim 0.1 \Lambda_{\rm CIE} \text{ may be required.}$$

$$t_{\rm cool} \sim \frac{nkT}{n^2 \Lambda} \sim 0.03 \; \text{Gyr} \left(\frac{n}{10^{-3} \text{ cm}^{-3}}\right)^{-1} \left(\frac{T}{10^6 \text{ K}}\right) \left(\frac{\Lambda}{\Lambda_{\rm CIE}}\right)^{-1}$$

Radiation field: N/A

The cooling function corresponds to the CIE case.

The more gas cools, the more cooling function increases.

Radiation field: ISM (Black 1987) BG (Haardt & Madau 12)

The cooling function does not change at $T \sim 10^6$ K because of a lack of soft X-ray photons.

How many photons are required?

Radiation field: ISM (Black 1987) BG (Haardt & Madau 12)

We require $\sim 10^{-2} \text{ erg/s/cm}^2$ photons to suppress the cooling function.

 \rightarrow supernovae?

The supernovae may not provide the required ionizing photons.

We are now studying other possibilities (other soft X-ray sources, effects of delayed recombination, etc...)

Summary

- Recent observations suggest that the CGM is main reservoir of gas.
- The mass exchange between the CGM and Galactic disk is invoked to maintain the star formation in MW.
- The Galactic wind may be responsible for the metal polluted gas of CGM with a scale height of 100 kpc.
- We must derive how the gas cooling function is suppressed by a tenth compared with the case of CIE.