高エネルギー宇宙物理学研究会2020@ December 14(Mon), 17(Thu) オンライン(サテライト会場:東大宇宙線研)

パルサーのトルク問題と 中性子星内部電流の決定

道草 トルク問題

トルクバランスの問題は角運動量の輸送問題である。

星の

自転のエネルギー $E = \frac{1}{2}\Im\Omega^2$ $\dot{E} = \Im\Omega$ ^角ア $L = \Im\Omega$ $\dot{L} = \Im\dot{\Omega}$ energy loss rate / angular momentum loss rate $\dot{E}/\dot{L}=\Omega$

"エネルギー・角運動量関係"

角運動量を適切に捨てるために必要な腕の長さは光半径 c/Ω

問題がself-consistent に解かれていれば、エネルギー・角運動量関係は 自動的に満たされるので気にしなくても良い。だれも気にしていない。

In what way $\dot{E} = \Im \dot{\Omega} \Omega$ is released

Pulsar wind

gamma-ray pulses from outer magnetosphere

thermal X-ray from NS

particles, non-thermal radiation (unseen?)

radio emission from Polar cap

 $\dot{E} = \Im \dot{\Omega} \Omega$ -

system全体をself-consistent に扱っているひとは誰もいない。どの理論もfull global でない。エネルギー・角運動量関係は気にしたくても気にしようがない。 でも、やっぱり、エネルギー・角運動量関係は気にした方が良い場面がある。

考えた方が良い場合は少なくとも2つある:

- 1. Polar Cap model では回転エネルギーを粒子や光子で 持ち出すけど、光半径のずっと内側なので、角運動 量を持ち出さない。
- 2. 磁気圏電流が星内部(表面?)を通って星にブレーキを かけるとき、流れた電流にOhmic loss があると、回 転エネルギーが熱になって逃げるが、角運動量は持 ち出さない。

Fig. 5 Schematic view of the axisymmetric polar cap Fig. 6 For the orthogonal rotator only antisymmetric showing magnetospheric current density (open ar- current i_a (i.e., the current having different direction rows), surface currents, Ampére force on surface cur- in the north and south parts of the polar cap) takes rents, and braking torque. Here only the symmetric place. The structure of the surface currents within current i_s is present. Taken from Beskin (1999).

the polar cap and along the separatrix is also shown. Taken from Beskin et al. (2013).

Beskin, V.S., Chernov, S.V., Gwinn, C.~R., et al.¥ 2015, ¥ssr, 191, 207

- ほとんどのケースで電波はPolar Cap 起源
- Polar Cap Luminosity は Rotation Power に比べて無視できない(at least for old pulsars)

Polar Cap は結構な回転エネルギーを放出しているのに 角運動量は捨てていない。どうなっているか。

How inefficiency of the angular momentum loss can be compensated? CASE: Polar Cap

星本体は完全導体で、剛体回転とすると

電場は共回転電場で $\Phi = \text{constant} = 0$

$$\frac{1}{c}e_{s}n_{s}\boldsymbol{v}_{s} \times \boldsymbol{B} + e_{s}n_{s}\boldsymbol{E} = n_{s}\left(\frac{\partial}{\partial t} + \boldsymbol{v}_{s} \cdot \nabla\right)(m_{s}\gamma_{s}\boldsymbol{v}_{s}) + \boldsymbol{F}_{ext}$$
$$\boldsymbol{F}_{ext} = \frac{n_{s}\mathcal{P}_{s}}{c}\frac{\boldsymbol{v}_{s}}{c}$$
$$\mathcal{P}_{s} = (2e_{s}^{2}/3c^{3})\gamma_{s}^{4}|\boldsymbol{v}_{s} \times (\nabla \times \boldsymbol{v}_{s})|^{2} = (2e_{s}^{2}c/3R_{c})\gamma_{s}^{4}$$

 $v \cdot$

Poyingi energy converted into particles and photons

$$\dot{E}_{\rm in} = \int_{\rm in} \sum_{s} \boldsymbol{v}_s \cdot (e_s n_s \boldsymbol{E}) dV = \int_{\rm in} \boldsymbol{j} \cdot \boldsymbol{E} dV$$

angular momentum goes to particle and radiation

$$\begin{split} \dot{L}_{\rm in} &= \frac{1}{\Omega_*} \int_{\rm in} \sum_s \boldsymbol{u}_{\rm c} \cdot \left[\frac{1}{c} e_s n_s \boldsymbol{v}_s \times \boldsymbol{B} + e_s n_s \boldsymbol{E} \right] dV \\ &= \frac{1}{\Omega_*} \int_{\rm in} (\boldsymbol{j} \cdot \boldsymbol{E} + \boldsymbol{j} \cdot \nabla \Phi - q \boldsymbol{u}_{\rm c} \cdot \nabla \Phi) \, dV \end{split}$$

Energy-angular-momentum balance

 $(\boldsymbol{u}_{\mathrm{c}}/\Omega_{*})\cdot$

$$\Delta \dot{E}_{in} \equiv \dot{E}_{in} - \Omega_* \dot{L}_{in} = -\int_{in} (\boldsymbol{j} - q\boldsymbol{u}_c) \cdot \nabla \Phi \ dV \approx \int \boldsymbol{j}_{\parallel} E_{\parallel} \ dV \neq 0$$
ほとんどゼロ

Outer magnetosphere: ideal-MHD (one fluid model)

$$\frac{1}{c}\boldsymbol{j} \times \boldsymbol{B} + q\boldsymbol{E} = n\left(\frac{\partial}{\partial t} + \boldsymbol{v} \cdot \nabla\right)(m\gamma\boldsymbol{v})$$

$$= n\left[\frac{\partial m\gamma\boldsymbol{v}}{\partial t} + \nabla(mc^{2}\gamma) - \boldsymbol{v} \times (\nabla \times m\gamma\boldsymbol{v})\right]$$
(17.3.10)

(17.3.9) と v の内積、(17.3.9) と $u_{\rm c}/\Omega_*$ の内積

$$abla \cdot \boldsymbol{F}_{\mathrm{E}} = 0, \quad \nabla \cdot \boldsymbol{L}_{\mathrm{L}} = 0$$

flow of electromagnetic energy and angular momentum

$$\boldsymbol{F}_E = mn\gamma c^2 \boldsymbol{w} + \boldsymbol{S} - U \boldsymbol{u}_{\mathrm{c}}$$

 $\boldsymbol{F}_{L} = nm\gamma[(\boldsymbol{u}_{c}/\Omega_{*})\cdot\boldsymbol{v}]\boldsymbol{w} + (S - U\boldsymbol{u}_{c})/\Omega_{*} - (\boldsymbol{j} - q\boldsymbol{u}_{c})(\Phi/\Omega_{*})$

Thus the energy and angular momentum come into the outer magnetosphere through the surface S are

$$\dot{E}_{\text{out}} = \int_{S} (\boldsymbol{S} - U\boldsymbol{u}_{c}) \cdot d\boldsymbol{a}$$
 帳尻を合わせる項
 $\dot{L}_{\text{out}} = \frac{1}{\Omega_{*}} \left[\int_{S} (\boldsymbol{S} - U\boldsymbol{u}_{c}) \cdot d\boldsymbol{a} + \int_{S} [(\boldsymbol{j} - q\boldsymbol{u}_{c})(-\Phi)] \cdot d\boldsymbol{a} \right]$

Some part of this will be used to accelerate particles, and the rest of it reaches the termination shock in a pulsar wind.

$$\dot{\bullet} \dot{E}_{\rm in} + \dot{E}_{\rm out} = \Omega_* (\dot{L}_{\rm in} + \dot{L}_{\rm out})$$

Less efficient angular momentum loss of the inner magnetosphere is compensated by efficient loss of the outer magnetosphere. angular velocity of the outer magnetosphere may be represented by

$$\begin{split} \Omega_{out} &= \dot{E}_{\rm out}/\dot{L}_{\rm out} \ , \mbox{for which we have} \\ \Omega_{out} &= \Omega_* \frac{1}{1 + \Delta \dot{E}_{\rm in}/\dot{E}_{\rm out}} < \Omega_* \\ \mbox{effective light radius } c/\Omega_{\rm out} \ \mbox{if } R_L \\ & \int_{L} \int_$$

emission region の巻き込みが緩い、 平均の巻き込みは**Ω***

otherwise 巻き込みと緩和を間欠的に行う。

torq-prog/spr.f

Braking torque on the star

Karageorgopoulos V., Gourgouliatos K.~N., Contopoulos I., 2019, MNRAS, 487, 3333

9.00

that P_{Ohm} is minimized, we obtain the condition

How the Ohmic heating is possible even though it release no angular momentum but energy

相互作用する二流体モデルで考察

$$I_p = en_p E + \frac{1}{c} en_p v_p \times B + F_f$$
$$I_e = -en_e E - \frac{1}{c} en_e v_e \times B - F_f$$

$$\boldsymbol{F}_f = -m_e n_e (\boldsymbol{v}_p - \boldsymbol{v}_e) \nu_e$$

$$egin{array}{rcl} oldsymbol{I}_p + oldsymbol{I}_e &=& qoldsymbol{E} + rac{1}{c}oldsymbol{j} imes oldsymbol{B} \ oldsymbol{E} + rac{1}{c}oldsymbol{v} imes oldsymbol{B} &pprox oldsymbol{B} &pprox oldsymbol{j} \ oldsymbol{E} + rac{1}{c}oldsymbol{v} imes oldsymbol{B} &pprox oldsymbol{B} &pprox oldsymbol{j} \ oldsymbol{\sigma} &oldsymbol{v} \ oldsymbol{S} \end{array}$$

How the Ohmic heating is possible even though it release no angular momentum but energy

$$m{I}_p = en_p m{E} + rac{1}{c}en_p m{v}_p imes m{B} + m{F}_f$$

 $m{I}_e = -en_e m{E} - rac{1}{c}en_e m{v}_e imes m{B} - m{F}_f$
速度との内積をとってエネルギーの収支を確認
 $m{I}_p \cdot m{v}_p + m{I}_e \cdot m{v}_e = m{j} \cdot m{E} - m_e n_e
u_e (v_p^2 + v_e^2) = m{j} \cdot m{E} - m{j}^2 / \sigma$
 $m{v}_p = m_p n_p \Omega \varpi m{e}_{\varphi}$ (differential rotation $\neq \Omega_*$ allowed)
 $\oplus \Omega \dot{\Omega} m_p n_p \varpi^2 = m{j} \cdot m{E} - m{j}^2 / \sigma$

$$\langle \Omega \dot{\Omega} \rangle \Im = \int_{V_*} \boldsymbol{j} \cdot \boldsymbol{E} dV - \int_{V_*} (j^2 / \sigma) dV$$

Rotation energy goes to the magnetosphere and Ohmic heat

goes to the magnetosphere

$$\dot{\mathcal{E}}_{\mathcal{S}_*} = \Omega_* \dot{\mathcal{L}}_{\mathcal{S}_*} = \int_{\mathcal{S}_*} (\boldsymbol{S} - U \boldsymbol{u}_{\mathrm{c}}) \cdot d\boldsymbol{a}$$

$$\langle \Omega \rangle \equiv \frac{-\Im \langle \Omega \dot{\Omega} \rangle}{-\Im \langle \dot{\Omega} \rangle} = \Omega_* \left(1 + \frac{\int_{V_*} (j^2/\sigma) dV}{\int_{S_*} (\boldsymbol{S} - U\boldsymbol{u}_{\rm c}) \cdot d\boldsymbol{A}} \right) > \Omega_*$$

When there is Ohmic heating, the star internal matter rotate faster than the stellar surface.

Previous works which attempt to determine the current closure inside star do not care about the rotational structure inside are ill-conceived.

Demonstrate how the current inside the star is determined.

Actually Ohmic heating is not significant, so ideal-MHD is a good approximation. No Ohmic dissipation, no differential rotation

Any electromagnetic force by the magnetospheric current circulation is balanced by the grad-stress force. The current distribution becomes minimize the elastic energy.

moderately extended circuit within polar cap magnetic flux

Ele=3.2748862500955418E-003

Ele=3.6586679768049546E-003

short ciruited

moderately extended circuit within polar cap magnetic flux

Ele=3.2748862500955418E-003

Ele=4.6752470054759309E-003

extended circuit

moderately extended circuit within polar cap magnetic flux

Ele=3.2748862500955418E-003

Ele=3.7001186317131493E-003

cross and extend the polar cap flux

Result: (not surprisingly)

moderately extended circuit within polar cap magnetic flux

Ohm's law で電流を決めるアルゴリズムは間違い。 星内部の角運動量輸送と連立しないとけない。

電気抵抗は小さいので。 電流の閉じ方を決める物理は中性子星の弾性変形でないだ ろうか。

トルクをよく考えていない理論は他にもある。

Bai, X.-N., & Spitkovsky, A.¥ 2010, ¥apj, 715, 1282

いろいろな電流の可能性も 今後の検討課題