# マイクロクエーサーSS 433 からのガンマ線放射

# 東北大学(学振PD)

# 木村成生 (Shigeo S. Kimura)

参考文献



Kimura, Murase, Meszaros, 2020, ApJ, 904,188



2020年度高エネルギー宇宙物理学研究会 2020/12/14

#### ・マイクロクエーサー SS 433

- ・モデルと物理過程
- ・結果と議論
- ・まとめ

#### ・マイクロクエーサー SS 433

- ・モデルと物理過程
- ・結果と議論
- ・まとめ

### マイクロクエーサー SS 4 3 3



05 30 DECLINATION (B1950) 04 30 19 14 10 RIGHT ASCENSION (B1950) 12 **CREDIT: Blundell & Bowler,** NRAO/AUI/NSF

See Fabrika 2004 for review

# SS433からのTeVガンマ線

- ・HAWCがSS433の広がったジェットから TeVガンマ線を検出 —> マイクロクエーサーから初
- Leptonic model:
   シンクロトロン + 逆コンプトン(CMB)
- ・広帯域スペクトルをフィット



 $\log[\nu(Hz_{21})]$ 18 21 15 24 27 12 Leptonic (inverse Compton) Radio (ref. 14) Leptonic (synchrotron) XMM-Newton (ref. 15) Hadronic ( $\pi^0$  decay) RXTE (ref. 16) MAGIC-HESS 95% upper limits (ref. 19) • HAWC (this work) VERITAS 99% upper limits (ref. 20) og[ $E_{\gamma}^{2}\phi_{\gamma}$  (eV cm<sup>-2</sup> s<sup>-1</sup>)] **HAWC 2018** -3 9 11 13 -5 -1 3 15  $\log[E_{\gamma}(eV)]$ e1 10-11 Sudoh 2019  $E_{\gamma}^{2}\phi_{\gamma}$  [erg/cm<sup>2</sup>/s] 10-12 10-13  $\eta_{acc}=10$  $\eta_{acc} = 10^2$  $10^{-14}$  $\eta_{acc} = 10^3$  $\eta_{acc} = 10^4$ 

30

# SS433からのTeVガンマ線



・energetics から好まれない



<sup>-</sup>raction of Jet Power Needed by Protons 10<sup>1</sup> 0.112.0 · C. Elinar 1 300 Not allowed "I DO 10<sup>0</sup> 01 10<sup>-1</sup> ISM ISM Source (Kraichnan) (Kolmogorov) lifetime 10<sup>-2</sup> L  $10^{2}$  $10^{3}$  $10^{4}$  $10^{5}$ 10<sup>1</sup> Confinement Time [yr]

HAWC 2018

# SS433からのGeVガンマ線

・Bordas + 2015: SS 433の南東にGeV天体を検出 <--- ジェット軸から外れている

7

- ・Xing + 2019: 西側のジェットからGeVガンマ線を検出 <--- 東側は検出なし
- ・Rasul + 2019: 周期的に変光するGeVガンマ線を検出 <--- 中心の歳差を反映?
- ・Sun + 2019: W50全体に広がったGeVガンマ線を検出 <--- ジェット起源ではない?



### SS433からのGeVガンマ線

• Fang + 2020

\*上記の4研究は違うPoint source catalogを使っている \*上記の4研究は違うresponse functionを使っている --> SS 433と関係のない点源を引けていない。

・最新のカタログとresponse functionをHAWCとFermiの
 両方のデータを使って解析 —> フラットなGeV-TeV SED





### 目的

- ・TeVガンマ線はハドロン相互作用 でも放射される
- SS433のジェットには可視光の 輝線で見えるフィラメント構造が 付随。その密度は100 cm<sup>-3</sup> 程度
   —> ハドロン宇宙線と相互作用 すれば効率よくガンマ線生成



### ハドロンモデルとレプトンモデルの どちらが良いか議論

#### ・マイクロクエーサー SS 433

- ・モデルと物理過程
- ・結果と議論
- ・まとめ



基礎方程式



・定常 & 乱流再加速を無視 & One-zone近似 ---> 単純化した輸送方程式

$$\frac{d}{dE_i} \left( -\frac{E_i}{t_{i,\text{cool}}} N_{E_i} \right) = -\frac{N_{E_i}}{t_{\text{esc}}} + \dot{N}_{E_i}$$



(乱流加速)

・単純化した輸送方程式の定式解

$$N_{E_i} = \frac{t_{i,\text{cool}}}{E_i} \int_{E_i}^{\infty} dE'_i \dot{N}_{E'_i} \exp\left(-\int_{E_i}^{E'_i} \frac{t_{i,\text{cool}}}{t_{\text{esc}}} d\mathcal{E}_i\right)$$

物理過程

・衝撃波加速を仮定—>べき型の注入項

$$\dot{N}_{E_i} = \dot{N}_{i,\text{nor}} \left(\frac{E_i}{E_{i,\text{cut}}}\right)^{-p_{\text{inj}}} \exp\left(-\frac{E_i}{E_{i,\text{cut}}}\right),$$

・陽子の冷却過程はpp が卓越。prは無視できる。



「エネルギーは冷却・逃走による損失と加速時間の釣り合い



CMB photons

 $R_{\rm dis}$ 

 $V_i = 0.26c$ 

TeV γ-ray

**R**<sub>knot</sub>

Dissipation

 $V_{adv}=107 \text{ cm/s}$ 

 $V_{adv} = V_i/4$ 

Optical filaments

| モデ | ルノ | ペラ | X | ータ |
|----|----|----|---|----|
|----|----|----|---|----|

| Fixed parameters |                                    |               |               |              |        |              | op        |                      |
|------------------|------------------------------------|---------------|---------------|--------------|--------|--------------|-----------|----------------------|
| $\beta_j$        | $L_{j}$                            | $R_{ m knot}$ | $R_{\rm dis}$ | $\epsilon_p$ | $\eta$ | $d_L$        | _         | 強                    |
|                  | $[\mathrm{erg} \ \mathrm{s}^{-1}]$ | [pc]          | [pc]          |              |        | [kpc]        | _         | • <i>N</i> ef        |
| 0.26             | $2 \times 10^{39}$                 | 8.1           | 56            | 0.1          | 2      | 5.5          | _         | n ci                 |
|                  |                                    |               | ٦             |              |        | 7            | -         | $n_{\rm fil}$        |
|                  |                                    | 観測            | から            | 決まっ          | ってい    | いる           |           | $f_{ m vol}$         |
|                  |                                    | Mod           | lel pa        | arame        | eters  | 5.           |           |                      |
| Model            | $V_{ m adv}$                       |               | В             | $p_{ m inj}$ |        | $\epsilon_e$ |           | $n_{\rm eff}$        |
|                  | $[\mathrm{cm}\ \mathrm{s}^{-}$     | $^{-1}]$ [/   | $\mu G]$      |              |        |              |           | $[\mathrm{cm}^{-3}]$ |
| A                | $1.9 \times 1$                     | .09           | 32            | 2.0          | 1.     | $0 \times 1$ | $10^{-3}$ | 10                   |
| В                | $1.0 \times 1$                     | $-0^{7}$      | 36            | 1.6          | 1.     | $5 \times 1$ | $10^{-4}$ | 0.2                  |
| $\mathbf{C}$     | $1.9 \times 1$                     | $-0^{9}$      | 13            | 2.1          | 5.     | $0 \times 1$ | $10^{-3}$ | 0.01                 |
| D                | $1.0 \times 1$                     | $-0^{7}$      | 18            | 1.6          | 2.     | $0 \times 1$ | $10^{-4}$ | 0.01                 |

- ・V<sub>adv</sub>:移流速度 optical filamentsの移動速度 ~10<sup>7</sup> cm/s 強い衝撃波: V<sub>adv</sub> ~V<sub>j</sub>/4 ~1.9x10<sup>9</sup> cm/s
- ・ $n_{\text{eff}} = f_{\text{vol}} n_{\text{fil}}$  :有効密度  $n_{\text{fil}} \sim 100 \text{ cm}^{-3}$ はフィラメントの密度  $f_{\text{vol}}$ はvolume filling factor

A: Hadronic + high  $V_{adv}$ B: Hadronic + low  $V_{adv}$ C: Leptonic + high  $V_{adv}$ D: Leptonic + low  $V_{adv}$ 

#### ・マイクロクエーサー SS 433

・モデルと物理過程

#### ・結果と議論



# Hadronic models



- 移流速度が速いと、cooling breakは高エネルギー側へ
   \* ガンマ線スペクトルはフラットになり観測と無矛盾
- 移流速度が遅いと、cooling breakが低エネルギー側にシフト
   \* 電波を出しすぎないためには、硬いスペクトル指数が必要
   \* 陽子の逃走によるbreakでガンマ線スペクトルを説明

|       | Model parameters. |                                  |           |              |                      |                      |  |  |  |
|-------|-------------------|----------------------------------|-----------|--------------|----------------------|----------------------|--|--|--|
| Model |                   | $V_{ m adv}$                     | В         | $p_{ m inj}$ | $\epsilon_e$         | $n_{ m eff}$         |  |  |  |
|       |                   | $[\mathrm{cm} \mathrm{~s}^{-1}]$ | $[\mu G]$ |              |                      | $[\mathrm{cm}^{-3}]$ |  |  |  |
|       | А                 | $1.9 \times 10^9$                | 32        | 2.0          | $1.0 \times 10^{-3}$ | 10                   |  |  |  |
|       | В                 | $1.0 \times 10^7$                | 36        | 1.6          | $1.5 \times 10^{-4}$ | 0.2                  |  |  |  |
|       | С                 | $1.9 \times 10^{9}$              | 13        | 2.1          | $5.0 \times 10^{-3}$ | 0.01                 |  |  |  |
|       | D                 | $1.0 \times 10^7$                | 18        | 1.6          | $2.0 \times 10^{-4}$ | 0.01                 |  |  |  |

Dissinatio

CMB photons

16



- TeVガンマ線とX線の光度比 —> B~10-20µG
- 移流速度が速い場合、cooling breakが高エネルギーになる
   —> GeVバンドで硬いスペクトル —> 観測と矛盾
- ・遅い移流速度の場合、冷却によりフラットなスペクトル —> 広帯域スペクトルを説明可能

| _ | Model parameters. |                          |           |              |                      |                      |  |  |  |
|---|-------------------|--------------------------|-----------|--------------|----------------------|----------------------|--|--|--|
|   | Model             | $V_{\rm adv}$            | В         | $p_{ m inj}$ | $\epsilon_e$         | $n_{ m eff}$         |  |  |  |
|   |                   | $[\mathrm{cm \ s}^{-1}]$ | $[\mu G]$ |              |                      | $[\mathrm{cm}^{-3}]$ |  |  |  |
|   | А                 | $1.9 \times 10^9$        | 32        | 2.0          | $1.0 \times 10^{-3}$ | 10                   |  |  |  |
|   | В                 | $1.0 \times 10^7$        | 36        | 1.6          | $1.5 \times 10^{-4}$ | 0.2                  |  |  |  |
|   | С                 | $1.9 \times 10^9$        | 13        | 2.1          | $5.0 \times 10^{-3}$ | 0.01                 |  |  |  |
| _ | D                 | $1.0 \times 10^7$        | 18        | 1.6          | $2.0 \times 10^{-4}$ | 0.01                 |  |  |  |

Dissipatio

#### 高効率な粒子加速が必要

See also Sudoh + 2019

- ・全てのモデルでX線は電子からのシンクロトロン放射が担う
- ・ 衝撃波加速された電子からのシンクロトロン放射の最高エネルギー:

・上記二つを組み合わせると加速効率のパラメータの最大値は

$$\eta \approx \frac{9}{20} \frac{h_p e^2 \beta_j^2}{\sigma_T m_e c E_\gamma} \simeq 27 \left(\frac{E_\gamma}{30 \text{ keV}}\right)^{-1}$$

See also Reynoso + 2019

### SS433からのニュートリノ放射



- ニュートリノフラックスはTeV-100 TeV付付近で0.03 eV/s/cm<sup>2</sup>
- ・ IceCubeを10年運用でsensitivity ~ 1 eV/s/cm<sup>2</sup>→30倍足りない
- IceCube-Gen2は5倍大きくて各分解能が5倍良い
   →で20-30年運用すれば受けられる可能性

### AGNジェットとの比較

- AGNジェットのノットとホットスポット
   \* ホットスポット:ジェットの先端にある明るい領域
   \* ノット:ジェットの途中にある明るい点源
- ノットでは Zhang et al. 2018
  - \* 十分な減速がない —> 移流速度が速い
     \* 観測的にX線でカットオフが見えない
     —> 効率的な加速(ηが小さい)
- ・ホットスポットでは
  - \* 十分な減速 —> 移流速度が遅い \* 可視赤外にカットオフ
  - —> 加速効率が悪い (nが大きい)
- ・我々のモデルはηが小さい
  - --> 移流速度が大きいモデルが良い?



A: Hadronic + high  $V_{adv} \rightarrow Knot$ B: Hadronic + low  $V_{adv} \rightarrow Hotspot$ C: Leptonic + high  $V_{adv} \rightarrow Knot$ D: Leptonic + low  $V_{adv} \rightarrow Hotspot$ 

|                 | Hadronic         |            | Leptonic   |            |
|-----------------|------------------|------------|------------|------------|
| Model           | А                | В          | С          | D          |
|                 | Knot             | Hotspot    | Knot       | Hotspot    |
| HAWC data       | $\bigcirc$       | $\bigcirc$ | 0          | $\bigcirc$ |
| Fermi data      | $\bigcirc$       | $\bigcirc$ | ×          | $\bigcirc$ |
| Ambient density | $\bigtriangleup$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| AGN analog      | $\bigcirc$       | ×          | 0          | ×          |

#### ・マイクロクエーサー SS 433

- ・モデルと物理過程
- ・結果と議論





### ご静聴ありがとうございました。