超臨界降着ブラックホールのコロナモデル

(arXiv:2012.05386)

Norita Kawanaka

collaborator: Shin Mineshige

De

Department of Astronomy, Kyoto University

2020年度高エネルギー宇宙物理学研究会 2020/12/14

Typical spectra of X-ray binaries

General model: Disk-Corona

Liang & Nolan 1984; Haardt & Maraschi 1991

BH accretion flow = optically-thick, cool disk + tenuous, hot plasma (corona)

X-ray photons are produced in a hot gas (corona) by inverse Compton scattering of soft photons from an underlying disk.

→ account for the spectra of typical X-ray binaries and AGNs

Magnetic Reconnection-heated Corona Liu, Mineshige & Shibata 2002

- energy balance in the corona
 - reconnection heating = inverse Compton cooling

 $\left|\frac{B^2}{4\pi}V_A \approx \frac{4kT_c}{m_e c^2} n_c \sigma_T c U_{\rm rad} l\right| \qquad l: \text{ length of magnetic loops}$

- energy balance in the corona-disk boundary
 - heat conduction from the corona = evaporation

$$\frac{k_0 T_c^{7/2}}{l} \approx \frac{\gamma}{\gamma - 1} n_c k_B T_c \left(\frac{k_B T_c}{m_H}\right)^{1/2}$$

X-ray Spectra of Super-Eddington Accretors

Common to super-Eddington accretors?

Spectral states of ULXs

What is the origin of corona for $L > L_{Edd}$? radiation-hydrodynamic simulations: <u>existence of upgoing hot plasma from the disk</u> (radiation pressure-driven outflow)

Corona in super-Eddington accretion = radiation pressuredriven outflow?

Simple modelling

- (NK & Mineshige, submitted)
- Inner disk region: radiation force > gravity
 - \rightarrow radiation pressure-driven disk wind
- Assumption: coronal plasma is supplied by the disk wind ("outflowing corona")
- Heating process: reconnection of magnetic loops emerged from the disk (Liu, Mineshige & Shibata 2002)

outflowing corona: density *n*_c

Standard disk: mass accretion rate is constant Super Eddington disk: significant wind mass loss

$$\dot{M}(r) \simeq \dot{M}_0 \left(r/r_{\rm crit} \right)^s \quad (0 < s < 1)$$

$$r_{\rm crit} = \left(\dot{M}_0 c^2 / L_{\rm Edd} \right) r_g : \text{radiation force} = \text{gravity}$$

Typical wind velocity: $v_{\rm esc} \sim (2GM_{\rm BH}/r)^{1/2}$

$$n_c(r) = \frac{1}{4\pi r m_p v_{esc}} \frac{d\dot{M}(r)}{dr}$$

outflowing corona: temperature T_c , size l_c

- reconnection heating = inverse Compton cooling

$$\frac{B^2}{4\pi} V_A \approx \frac{4k_{\rm B}T_c}{m_e c^2} c U_{\rm rad} \cdot \max\left(\tau_c, \tau_c^2\right)$$

B: magnetic field ... equipartition with disk pressure; $B^2/4\pi \sim \eta_B a T_{disk}^4$) $V_A = B/(4\pi m_p n_c)^{1/2}$: Alfvén velocity U_{rad} : seed photon energy density ... Limited by the Eddington flux: $\sim L_{Edd}/(4\pi r^2 c)$ $\tau_c = n_c \sigma_T l_c$: Thomson scattering optical depth

- scale height of the corona: $l_c(r) \sim r$ wind's escape time = photon's diffusion time $\rightarrow l_c \sim \min [c/(v_{esc}n_e\sigma_T), r]$

Spectrum Calculation

- seed photon: Planck distribution $T_{\text{seed}} = (U_{\text{rad}}/a)^{1/4}$
- Monte Calro simulation (Podznyakov et al. 1977) at each radius, using T_c(r) and τ_c(r)
- Only Compton scattering is considered
- Bulk Comptonization is taken into account
- Reprocessed photons are also taken into account.

Count all photons emerging from the upper boundary of the corona

Results : optical depth & temperature

 $M_{\rm BH} = 10 M_{\rm sun}$ $s = 0.15 \leftarrow$ from RHD simulations (Kitaki+18, 20) $\eta_R = 0.015 \leftarrow \text{maximal heating}$

Scattering optical depth

···· typically $\tau_c \sim 1-7$

temperature

... typically $T_c \sim a \text{ few } \times 10 \text{ keV}$ Observationally inferred coronal properties are fairly reproduced.

Results : Spectra

M increases

 → The peak frequency of the Comptonized component decreases. The cutoff frequency of the Comptonized component decreases (∵ efficient Compton cooling).

Why do we have optically thick & cool corona? sub-Eddington accretion flow

- Coronal plasma is fed by the evaporation driven by heat conduction
- → When corona becomes optically thick enough, due to Compton cooling, the temperature difference between corona and disk gets smaller
- → Evaporation driven by heat conduction is suppressed
- \rightarrow Corona cannot get too optically thick.

super-Eddington accretion flow

- Coronal plasma is fed by radiation pressure-driven disk wind, which would not be suppressed even if corona becomes very optically thick
- → Corona would be cooled via efficient Compton scattering.

Summary (see arXiv:2012.5386 for details)

- We propose a simple model for <u>optically-thick and</u> <u>cool corona</u>, inferred from the observations of super Eddington accretor such as ULXs, NLS1, etc.
 - (1): corona = radiation-driven wind
 - (2): Energy balance between magnetic reconnection heating and inverse Compton cooling in the corona
- Using Monte Carlo simulations, we solve the transfer of photons in the outflowing corona taking into account Compton scattering
- → $T_c \sim O(10)$ keV, $\tau_c \gtrsim 1-10$ are naturally reproduced
- → SED: soft thermal bump + Compton component typical ULXs' spectra are fairly reproduced