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Radiation Mediated Shocks (RMS)

Upstream uu

downstream duShock transition 
mediated by Compton scattering

Radiation dominated fluid

Scattered 
photons

      ・downstream energy dominated by radiation
                          ・upstream plasma approaching the shock is decelerated by   
         scattering of counter streaming photons 
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Under which conditions a RMS forms ? 

- Radiation dominance downstream: 

- Jump conditions:

⇒ 	#$ > 10() * +$
10,-	cm(01

,/3
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But requires photon trapping: 

!"#$$ > !&'()) ⇒ + > 	1//0  

shock	width:		∆-~	1/12 (may altered by pair production and Klein-Nishina effect   
 for relativistic shocks)



6

Why is it interesting ? 

- The conditions required to form RMS are always satisfied below the  
photosphere of fast flows 

Examples:  shock breakout in SNe, LLGRB, etc
                   sub-photospheric shocks in GRBs
                   NS-NS mergers
                   accretion flows 
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Shock breakout 

      ・Transition from RMS to collisionless shock 

      ・Breakout signal depends on structure of RMS

Breakout when 

- From edge of stellar envelop (SNe) 

- From a stellar wind (SNe, LLGRB) 

- From a moving ejecta (NS mergers) 

-  From a jet (GRB)

(may altered by pair production and Klein-Nishina effect   
 for relativistic shocks)
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Upstream
uu

downstream du
Shock transition  mediated by 
collective plasma processes 

Upstream uu

downstream du
Shock transition  mediated by 
Compton scattering

Radiation dominated fluid

Scattered  photons

• Scale: c/wp ~ 1(n15)-1/2 cm , c/wB~ 3e(B6)-1  cm

• can accelerate particles to non-thermal energies.

• scale: (sT n bs)-1 ~ 109 n15
-1 cm

• microphysics is fully understood
• cannot accelerate particles 
(important implications for HE 
neutrino production)                           

Plasma turbulence
collisionless 

RMS 

Collisionless shocks .vs. RMS 
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Photon source: two regimes 

-Photon starved shocks: 
                                 Photon production inside the shock (SNe, LLGRB, BNS merger)

-Photon rich shocks: 
                                 Photon advection from upstream (sub-photospheric shock in GRB, BNS merger ?) 

Upstream -u

Photon production - ff

Photon advection

downstream du
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Shock velocity: three regimes 

Figure 1: Schematic illustration of the structure of a slow (upper panel), fast (middle panel) and relativistic
(lower panel) RMS. The five distinct regions (three in a slow shock) are indicated. The solid black and
dashed red lines delineate the velocity and temperature profiles, respectively. In a slow shock the temperature
approaches the black body limit inside the shock, whereas in fast and relativistic shocks this limit is reached
far downstream; the temperature in the immediate downstream can be considerably higher, depending on
the shock velocity and the photon-to-baryon ratio far upstream. In a relativistic, photon starved RMS the
immediate downstream temperature is regulated by copious pair production and ranges from about 100 keV
for bu ' 0.5 to 200 keV for gubu >> 1. The newly created pairs also dominate the shock opacity. The
horizontal axis gives the optical depth traversed by a photon moving towards the upstream.
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14

(3) Relativistic shocks   βu >0.5

tcr :shock crossing time
tth :thermalization time

 for review see 
  Levinson & Nakar 2019 arXiv190910288L 
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Non-relativistic .vs. Relativistic 

Non-relativistic RMS
• small energy gain: De/e<<1
• diffusion approximation holds. 
Zeldovich & Raiser 1967; Weaver 1976; Blandford & Payne 1981; 

Relativistic  RMS (RRMS)
• photon distribution is anisotropic
• energy gain large: De/e >1

optical depth depends on angle: t a (1-b cosq)
• copious pair production
Levinson & Bromberg 08; Katz et al. 10; Budnik et al. 10; Beloborodov 2017
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Self-consistent calculation which incorporates radiation transfer 
Photon Rich regime 

Levinson & Bromberg (2008)  
Energy integrated intensity, Klein-Nishina effect, pair production neglected

Beloborodov (2017)
Full radiation transfer, effects of magnetic field, dynamical simulation         pair production neglected

Lundman, Beloborodov, & Vurm (2018)
Full radiation transfer, pair production effect, dynamical simulation     some approximation in temperature calculation ?

HI, Levinson, Stern & Nagataki (2018)
Full radiation transfer with pair production, no optimistic approximation    steady state

Lundman & Beloborodov (2020)
Dynamical simulation of shock breakout in photon rich merger ejecta      no pair production (found to be negligible)

Photon Starved regime 

Full radiation transfer with pair production and bremsstrahlung emission/absorption  
 steady state, some optimistic approximation on cross sections, limited to relativistic limit 6 < Γ < 30 

Budnik, Katz, Sagiv, & Waxman (2010)

HI, Levinson & Nagataki (2020)
Full radiation transfer with pair production and bremsstrahlung emission/absorption, broad range in velocity 0.1 < Γβ < 20
 steady state

HI, Levinson & Nakar (2020)
Full radiation transfer with pair production and bremsstrahlung emission/absorption, Effect of energy escape is included
 steady state, limited to fast Newtonian regime
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Numerical Method 

Microphysics
・Compton scattering with full Klein-Nishina    
    cross section
・free-free emission & absorption 
・pair production & absorption

Give plasma profile (n,T,Γ)

Solve radiation transfer using Monte-Carlo Method

Evaluate deviation from energy-momentum conservation

Iterate until convergence is achieved

feedback

Assumptions
・electrons/positron and proton are single fluid with same    
    temperature  
・electron/positrons have Maxwell distribution 

      May breakdown near the subshock and when numerous pairs are  
      present (Levinson 2020)



infinite RRMS  
(photons are completely trapped)

18

上流

下流

vu ~ c (光速 )  

散逸領域

a

vd << c 

光子 - プラズマ 
相互作用

a

τu >> 1  
(no photon escape from  US boundary) 
     

HI, Levinson, Nagataki 2020 (MNRAS, 492, 2902) 
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infinite RRMS  
(photons are completely trapped) RRMSs in photon starved regime 5
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Figure 3. Pair loaded Thomson optical depth (left) and dimensionless width (right) of the shock transition layer. Here the shock width ∆x, as measured in the

shock frame, is defined as the distance from the location where (Γβ)/(Γuβu) = 0.9 to the subshock, or to the downstream point where (Γβ)/(Γdβd) = 1.1 when

a subshock is absent. The red triangles show the results obtained from the simulations. The dotted and dashed lines delineate the scaling anticipated in the

highly relativistic ( ∆τ∗ ∝ Γ2
u and ∆τ̃ ∝ Γ3

u) and subrelativistic (∆τ̃ ∝ β−1
u ) regimes, respectively.
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Figure 4. Shock-frame, local, angle integrated SEDs, c−1
∫

νIνdΩ, normalized by the total kinetic energy density of the far upstream flow, eu = Γu(Γu −
1)numpc2. The left and right panels correspond to the downstream locations τ∗ ≈ 0 and τ∗ ≈ 2.5, respectively. The blue, black, magenta, brown, green and red

lines show the results for βu = 0.1, 0.5, and Γu = 2, 6, 10 and 20, respectively. The dotted lines delineate the Wien spectra for the βu = 0.1 and βu = 0.5 cases.

tail is bulk Comptonization of counterstreaming photons in the de-

celeration zone. However, this high energy component is strongly

beamed along the flow (see Fig. 5), and is present only in a beam

that subtends an angle of ∼ 1/Γu around the flow direction. As a

consequence, it is unlikely to be seen in highly relativistic break-

outs (since we observe the counterstreaming photons that escape

through the upstream region). However, it might have some ef-

fect on the observed spectrum in mildly relativistic breakouts from

aspherical shocks. It should be also noted that, while the beamed

component is difficult to be observed, certain extension from expo-

nential cut-off is likely to be observed even in the spherical breakout

for βu ! 0.5. This can be confirmed in the lower panels of Fig. 6

which show the spectra of counterstreaming photons.

3.3 Comparison with previous works

As a check on our results, we compared the shock structure ob-

tained in the simulations with analytical and numerical solutions

reported in the literature. In the upper panel of Fig. 7 we show

a comparison of the Lorentz factor profiles obtained in our sim-

ulations for Γu = 6, 10 and 20 with those computed numerically

by Budnik et al. (2010). As seen, broad agreement is found in all

cases. It should be noted, however, that our simulations systemati-

cally find somewhat steeper profile (faster deceleration). One pos-

sible reason for this discrepancy might be the optimaization of the

cross sections in their numerical analysis (see Appendix E for de-

tails). We stress that our code employs the full Klein-Nishina cross

sections for Compton scattering and pair production, thus likely

producing more accurate results. Moreover, the current simulations

have advantage in that we cover a larger computational domain to

avoid any effects related to boundary conditions. We also find that

the flexibility of the Monte-Carlo method enables us to resolve the

momentum distribution of photons with a higher precision since we

inject sufficiently large number of particles6 to minimize statistical

errors.

6 In each simulation, more than 109 particles are injected.
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at which shock breakout commences 
      measured in upstream rest frame 
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Diffusion 
τ ~ βu-1

KN effect
 τ ∝ Γu３

RRMSs in photon starved regime 3

to about 50 keV at βu = 0.5, confirming the sensitive dependence

found earlier analytically (Weaver 1976; Katz, Budnik, & Waxman

2010). At βu = 0.1 the simulation result is in excellent agreement

with the analytic estimates, as can be seen by comparing the value

found in our simulation with Fig 5 in Levinson & Nakar (2019). At

βu > 0.5 there is only a very weak dependence of the temperature

on Γuβu, owing to the exponential pair creation thermostat men-

tioned above. The rapid increase of the pair content with increasing

Γuβu is clearly seen in the bottom panel of Fig. 1 for βu > 0.5. At

lower velocities the n±/n ratio is found to be practically zero. The

photon generation along the flow results in a significant increase

in the photon number towards downstream. As seen in the figure,

emergence of copious pairs for βu ! 0.5 largely enhances the pho-

ton production. It is noted that the discontinuous change of photon

to baryon ratio at τ∗ = 0 for Γu ! 2 is due to the instantaneous

change in the inertial frame as well as the comoving baryon den-

sity across the subshock.

As also seen, the shock width increases with decreasing ve-

locity in the Newtonian regime, whereas it increases with increas-

ing Lorentz factor in the relativistic regime. As will be discussed

in more detail in Section 3.1.2 below, the reason for this appar-

ently peculiar behaviour is that in the Newtonian regime the width

is set by the diffusion length of photons, whereas in the relativis-

tic regime it is largely affected by Klien-Nishina suppression. This

suppression allows photons that propagate from the downstream to

the upstream to penetrate to a much larger distances ahead of the

shock and, as a result, a substantial increase in the temperature and

pair density begins well before the flow decelerates, at increasingly

larger distance for larger Γu. The maximal value of the temperature

is attained at the upstream, while the pairs density reaches its max-

imum in the near downstream (Fig. 2). A quantitative scaling of the

physical shock width across the entire velocity range is derived in

Section 3.1.2 below.

3.1.1 Subshocks

As mentioned above, one of the characteristic features which is

only seen in relativistic RMS is formation of a subshock. Our sim-

ulations indicate that, while the photon-plasma interaction leads to

a smooth transition at βu " 0.5, subshocks2 inevitably form when

Γu # 2. A similar phenomena was found also in photon rich shocks,

although the subshocks there are much weaker (paper I). A close-up

view of the subshock region is shown in Fig. 2. It is overall consis-

tent with the substructures seen in the simulations of Budnik et al.

(2010), however, the strength of the subshocks in our simulations

are larger than those reported in Budnik et al. (2010). The velocity

jump across the subshock they find is roughly δ(Γβ) ∼ 0.1 for all the

cases they explored (Γu = 6, 10, 20 and 30), implying negligible en-

ergy dissipation, whereas we find velocity jumps of δ(Γβ) ∼ 0.16,

0.33, 0.38 and 0.66 for Γu = 2, 6, 10 and 20, respectively, with

subshock dissipation of a few percents of the total shock energy3

2 The subshock is presumably mediated by collective plasma processes on

kinetic scales that are much shorter than the mean free path of photons. In

our analysis it is treated as a discontinuity in the flow parameters across

which the Rankine-Hugoniot jump conditions are satisfied.
3 The total kinetic energy flux that is dissipated in the shock is given as

Jmpc3(Γu − Γd), where J = Γunuβu is the baryon number flux. Taking into

account the presence of pairs, the energy dissipated in the subshock is given

by J[mp + (n±/n)subme]c3(Γu,sub − Γd,sub), where (n±/n)sub is the pair to

baryon ratio at the subshock and Γu,sub and Γd,sub are the Lorentz factors

of the flow at immediate upstream and downstream of the subshock, re-
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Figure 1. Overall shock structure for upstream velocities of βu = 0.1 (blue),

βu = 0.5 (black), Γu = 2 (magenta), Γu = 6 (brown), Γu = 10 (green) and

Γu = 20 (red). In each panel, from top to bottom, we display the 4-velocity

Γβ, the plasma temperature T , the pair -to- baryon density ratio n±/n and

the photon -to- baryon ratio nγ/n, as a function of optical depth τ∗. The

location of τ∗ = 0 are taken at the position of the subshock (Γu ! 2) or the

position where the velocity satisties β = 1.05βd when subshock is absent

(βu $ 0.5).

The origin of this discrepancy may be traced to the approximation

imposed in their analysis. A careful scrutiny of their analysis can

be found in Appendix E. Apart from these details, our simulations

show a broad agreement with Budnik et al. (2010), as will be dis-

cussed further below.

3.1.2 Scaling of the shock width

As stated above, the width of the shock transition layer (i.e., the

deceleration zone) is a non-monotonic function of the shock 4-

velocity. In the non-relativistic regime (βu $ 1) the transport of

radiation across the shock is diffusive, and the transition occurs

rather gradually over one diffusion length roughly (Weaver 1976;

spectively. Hence, the fraction of energy dissipated in the subshock can be

estimated as [1 + (n±/n)subme/mp](Γu,sub − Γd,sub)/(Γu − Γd).

MNRAS 000, 000–000 (0000)
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Comparison with Budnik et al. 2020 8 Ito et al.
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Figure 7. Comparison of the Lorentz factor profiles obtained din the sim-

ulation for Γu = 6, 10 and 20 with the numerical results of Budnik et al.

(2010) (upper panel) and the analytical solutions of GNL18 (bottom panel).

The profiles are given here as functions of the dimensionless variable

Γ−1
u

∫

Γ(1 + β)(n + n±)σT dx used in Budnik et al. (2010), which different

from the pair loaded Thomson depth τ∗ used in Figs 1 and 2.

(Γu < 6) are performed. Our results for fully relativistic (Γu ! 6)

RMS are in good agreement with the numerical solutions obtained

by Budnik et al. (2010), and the analytical solutions derived by

Nakar & Sari (2012) and Granot, Nakar & Levinson (2018) for the

shock profile. The main findings are:

(i) Our simulations confirm that in the fast Newtonian regime

(0.05 " βu " 0.5) the immediate downstream temperature depends

sensitively on shock velocity (roughly as β3
u), whereas in relativis-

tic shocks it is regulated by exponential pair creation, and lies in

the range 100 − 200 keV, with a very weak dependence on Γu.

For the assumed density and composition (pure H), the transition

to pair dominance was found to occur at βu = 0.5, as anticipated

earlier. For r-process composition it is expected to occur at some-

what higher velocity (Levinson & Nakar 2019). In Section 4 we

discussed the implications of the sensitive dependence of T on βu

for the shock breakout model of GRB 170817A.

(ii) In all cases explored (βu ! 0.1) the radiation in the imme-

diate downstream is out of thermodynamic equilibrium due to in-

sufficient photon generation. The black body limit is reached only

relatively far downstream. As a result, the spectrum below the νFν
peak is considerably softer than the Planck spectrum down to a

break frequency that depends on shock velocity, below which the

spectrum hardens (Fν ∝ ν2). This implies a much brighter optical

emission in fast Newtonian and relativistic breakouts than naively

estimated by invoking Wien spectrum below the peak, with impor-

tant consequences for the detection rate of shock breakout candi-

dates. In particular, we argued that the softening of the spectrum

below the peak is consistent with the early X/UV/optical emission

detected in GRB 060218. A detailed analysis of the observational

consequences is underway.

(iii) In relativistic shocks the photon distribution inside the

shock is highly anisotropic. For the photon beam that subtends an

angle ∼ 1/Γu around the flow direction (that is, moving towards the

downstream), the spectrum above the peak extends to an energy

of Γ2
umec

2 in the shock frame. This should not affect the observed

spectrum in most relativistic breakouts, but might have some ef-

fect on the high energy spectrum in mildly relativistic, aspherical

breakouts, which are expected in cases where the shock is driven

by a jet as, e.g., in BNS mergers and llGRB. The reason is that an

observer located at some angle to the axis will receive contributions

from different parts of the shock, each moving at a different Lorentz

factor and in a different direction.

(iv) While in fast and mildly relativistic RMS the shock tran-

sition is smooth, relativistic RMS (Γu ! 2) exhibit subshocks with

a local velocity jump of δ(Γβ) ∼ 0.2 − 0.7 for Γu = 2 − 20, and

a non-negligible strength. We find that a few percents of the to-

tal shock energy dissipate in the subshock. It is unclear at present

wether these subshocks can accelerate particles to highly relativis-

tic energies, but if they can it might significantly affect the emitted

spectrum. Further investigation is needed to quantify the effect of

the subshock on the high energy emission.

Our simulations provide an important insight into the proper-

ties of fast and relativistic RMS, and their role in shaping the shock

breakout signal in energetic supernovae, low luminosity GRBs and

NS mergers. The results of our simulations can be employed to

predict the spectral evolution during the breakout phase under con-

ditions anticipated in specific systems. However, the present analy-

sis applies to infinite shocks and may not be adequate enough to

describe breakouts from stellar winds, in which radiative losses

become gradually important during the breakout phase, changing

the shock structure (GNL18, Ioka, Levinson & Nakar 2019). Our

Monte-Carlo technique has been generalized recently to finite RMS

with radiative losses, and the investigation of such shocks is cur-

rently in progress, and will be reported in a future publication (Ito,

Levinson & Nakar, in preparation).
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Table 1
Equilibrium Values of x+, Balancing the Pair Production and

Annihilation Rates at Different Temperatures

T̂ xanalytic xnum

0.3 550 425
0.5 541 500
0.8 421 421
1.5 259 266
10 43 43

4.3.2. Pair Quasi-equilibrium for Given T

This test checks the numerical description of the (integral)
pair production and annihilation. We use a setup with a given
Wien spectrum of the radiation field,

Iν̂(µ) ∝ ν̂2e−ν̂/T̂ . (71)

For a given T̂ , we find the equilibrium value of x+ = n+/np

for which the positron production and annihilation rates cancel
each other analytically and numerically. A comparison between
the two values obtained is given in Table 1 for different
temperatures.

Note that x+ does not necessarily grow with T̂ , since we use
different densities n for convenience. We obtain an accuracy of a
few % except for very low temperature, where higher resolution
is needed in order to account for the exponential cutoff near
ν̂ = 1. The resolution used here is νn+1/νn = 1.4, Nµ = 12.

5. NUMERICAL RESULTS

In this section, we present the numerical results, solving
Equations (14)–(18) self-consistently for different values of the
US Lorentz factor Γu. We divide the presentation of the results
into two parts: the structure (Section 5.1) and the radiation
spectrum (Section 5.2). The structure is the spatial distribution
of integral parameters such as temperature, velocity (or Lorentz
factor), pair density, and radiation pressure. The spectrum is the
distribution of radiation intensity at different angles and photon
energies (at given locations across the shock), measured in a
specific reference frame. Two important frames of reference
are the shock frame, in which the solution is a steady state
solution, and the local rest frame of the plasma, which is useful
for understanding the interaction between the radiation and the
plasma.

5.1. Structure

The values of Γβ, T̂ and x+ for Γu = 6, 10, 20, and 30 are
shown in Figures 6–11 as functions of the Thomson optical depth
for US-going photons τ∗ (defined in Equation (27)) or τ∗/Γu.
Figures zoomed on the DS region (τ∗ ! 0) are separately given.
The results are calculated for nu = 1015 cm−3, over regimes
where bremsstrahlung absorption is negligible (i.e., they are in
the low density limit, see Section 2.3.5).

The shock profiles can be divided to four regions.

1. Far upstream. The velocity is constant, while the radiation
intensity and positron fraction grow exponentially until they
hold a significant fraction of the energy and momentum of
the flow.

2. The velocity transition. Here, the flow decelerates consid-
erably, reaching a velocity close to the DS velocity. For
RRMS, this regime is bound by a subshock.
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Figure 6. Relativistic velocity of the flow Γβ vs. τ∗/Γu for different values of
Γu, from the US to the subshock (τ∗ = 0).
(A color version of this figure is available in the online journal.)
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3. Immediate downstream. In the first β−1
d optical depths

behind the velocity transition the flow approximately stays
at constant velocity, while the plasma and radiation are
in CE. A gradual cooling by bremsstrahlung emission
and inverse Compton scattering takes place. This region
produces the radiation that diffuses US and decelerates the
incoming plasma.

4. Far downstream. Further than approximately β−1
d optical

depths into the DS, from where most photons cannot diffuse
US. From this point on, a slow thermalization takes place
accompanied by a slow decline in the plasma temperature
and photon energies, ending when the temperature reaches
the DS temperature. The decline in temperature leads
first to a decrease in positron number, until the pair
density becomes negligible compared to that of the original
electrons (x+ < 1) at T ∼ 50 keV. Then the thermalization
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continues until bremsstrahlung absorption takes over and
thermal radiation at equilibrium is established.

We do not solve the equations in the fourth region since the
solution there is straightforward (the radiation is isotropic and
in equilibrium with the plasma). Also, note that since the far DS
is supersonic, a second sonic point is expected in RRMS. This,
however, is a stable point with no special physical significance.

Figures 6 and 7 show, for different values of Γu, the structure
of the relativistic velocity Γβ across the shock. It can be seen that
the deceleration length in units of τ∗ is much larger than unity
and grows with Γu in a manner faster than linear. A subshock is
obtained at the sonic point, with a discontinuous deceleration of
δ(Γβ) ∼ 0.1. Behind the subshock, the velocity approaches its
far DS value in a few Thomson optical depths. The last optical
depth is affected by the boundary conditions imposed on the
right-hand side. This effect will be discussed in Section 5.4.2.

Figures 8 and 9 show, for different values of Γu, the structure
of the temperature T̂ across the shock. The far US shows an
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Figure 10. Positron to proton ratio x+ vs. τ∗/Γu for different values of Γu, from
the US to the subshock.
(A color version of this figure is available in the online journal.)
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Figure 11. Positron to proton ratio x+ vs. τ∗ for different values of Γu, around
the subshock.
(A color version of this figure is available in the online journal.)

exponential growth of T̂ as a function of τ∗. The temperature
then saturates at a maximum which is approximately linear in Γu,
and then decreases toward the subshock. Behind the subshock
the temperature jumps, reaching a value of T̂jump ∼ 0.5, which
grows with Γu, and then cools with a typical distance of a few
Thomson optical depths (τ∗).

Figures 10 and 11 show, for different values of Γu, the
structure of the positron to proton number ratio, x+, across the
shock. The growth of x+ as a function of τ∗ when approaching the
subshock is super exponential, and its value reaches a maximum
a few optical depths behind the subshock. The maximal value is
approximately linear in Γu (see Figure 12). Figure 13 shows x+T̂
across the shock, which represents the pressure of the positrons
and their relative importance in setting the speed of sound in the
plasma, compared to the protons. The value of x+T̂ goes above
a few hundreds at the subshock for Γu ! 6.

Figure 14 shows the ratio of thermal energy flux carried
by electrons and positrons to the radiation energy flux, Fsh,
versus Γβ/(Γuβu). The energy flux (“taken” from the protons)
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continues until bremsstrahlung absorption takes over and
thermal radiation at equilibrium is established.

We do not solve the equations in the fourth region since the
solution there is straightforward (the radiation is isotropic and
in equilibrium with the plasma). Also, note that since the far DS
is supersonic, a second sonic point is expected in RRMS. This,
however, is a stable point with no special physical significance.

Figures 6 and 7 show, for different values of Γu, the structure
of the relativistic velocity Γβ across the shock. It can be seen that
the deceleration length in units of τ∗ is much larger than unity
and grows with Γu in a manner faster than linear. A subshock is
obtained at the sonic point, with a discontinuous deceleration of
δ(Γβ) ∼ 0.1. Behind the subshock, the velocity approaches its
far DS value in a few Thomson optical depths. The last optical
depth is affected by the boundary conditions imposed on the
right-hand side. This effect will be discussed in Section 5.4.2.

Figures 8 and 9 show, for different values of Γu, the structure
of the temperature T̂ across the shock. The far US shows an
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exponential growth of T̂ as a function of τ∗. The temperature
then saturates at a maximum which is approximately linear in Γu,
and then decreases toward the subshock. Behind the subshock
the temperature jumps, reaching a value of T̂jump ∼ 0.5, which
grows with Γu, and then cools with a typical distance of a few
Thomson optical depths (τ∗).

Figures 10 and 11 show, for different values of Γu, the
structure of the positron to proton number ratio, x+, across the
shock. The growth of x+ as a function of τ∗ when approaching the
subshock is super exponential, and its value reaches a maximum
a few optical depths behind the subshock. The maximal value is
approximately linear in Γu (see Figure 12). Figure 13 shows x+T̂
across the shock, which represents the pressure of the positrons
and their relative importance in setting the speed of sound in the
plasma, compared to the protons. The value of x+T̂ goes above
a few hundreds at the subshock for Γu ! 6.

Figure 14 shows the ratio of thermal energy flux carried
by electrons and positrons to the radiation energy flux, Fsh,
versus Γβ/(Γuβu). The energy flux (“taken” from the protons)
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Blandford & Payne 1981a,b; Katz, Budnik, & Waxman 2010). By

equating the diffusion time across the shock, tD = ∆τ∗Ls/c, here Ls

is the shock width and ∆τ∗ =
∫ 0

−Ls
σT ndx is the optical thickness

of the shock, with the flow time, t f =
∫ 0

−Ls
dx/cβ = ∆τ∗/(σT nuβu)

(recalling that nβ = nuβu), one obtains:

σT nuLs ≈ 1/βu. (1)

The right panel in Fig. 3 shows good agreement between this naive

estimate and the simulation result for βu = 0.1 (see also Appendix

C).

In difference, in the relativistic regime (βu ∼ 1) counter-

streaming photons are mostly scattered back in a single scatter-

ing.4 Nonetheless, the pair loaded Thomson optical depth is sig-

nificantly larger than unity, and increases with increasing Γu, by

virtue of Klein-Nishina effects. In fact, the change of the shock

width with Γu is nonlinear, since the temperature inside the shock

is roughly proportional to the local Lorentz factor (Fig. 1), implying

that the mean photon energy seen in the rest frame of an electron

(or positron) and, hence, the Klein-Nishina suppression, scale as

Γ2.5 This heuristic result is in a good agreement with the simula-

tions performed by Budnik et al. (2010) and the analytic solution

derived in Nakar & Sari (2012) and GNL18, who find the scaling

∆τ∗ ∝ Γ2
u (up to a logarithmic factor). These solutions also yield

the scaling ∆τ̃ ∝ Γ3
u for the pair unloaded depth of the shock transi-

4 There is also contribution from pair production, but the opacity is smaller

than that for Compton scattering.
5 Note that since the temperature in the immediate downstream is fixed by

pair creation, the mean energy of counterstreaming photons, as measured in

the shock frame, is roughly mec2, independent of Γu, and the local comov-

ing energy is ∼ Γmec2. About half of it is converted to internal energy (per

lepton), hence the scaling.

tion layer, defined as ∆τ̃ =
∫ 0

−∆x
ΓnσT dx = σTΓunu∆x, where ∆x is

the length, as measured in the shock frame, over which the shock

Lorentz factor changes substantially (see GNL18 for details). The

optical thickness ∆τ̃ corresponds to the minimum opacity needed

to sustain the RMS; once the total optical depth ahead of the shock

becomes smaller than this value, viz., τ ! ∆τ̃, radiation starts leak-

ing out of the shock and the shock structure is significantly altered

(GNL18). This is the point where breakout commences.

Fig. 3 shows the pair loaded Thomson depth of the shock tran-

sition layer ∆τ∗ (left panel), and the dimensionless shock width

ΓunuσT∆x (right panel), measured in the simulations (the red tri-

angles). The latter equals the pair unloaded Thomson optical depth

in the limit Γu & 1. The shock width ∆x is defined here as the

backward distance (measured in the shock frame) from the sub-

shock (or the point where Γβ = 1.1Γdβd if there is no subshock),

at which the 4-velocity reaches 90% of its upstream value, that

is, Γ(−∆x)β(−∆x) = 0.9Γuβu. As seen, while for βu = 0.1 the

shock thickness ∆τ̃ agrees well with Eq. (1), it is much narrower

for βu = 0.5. The reason is that in this case the opacity inside the

shock is dominated by newly created pairs, as can be inferred by

comparing the results for βu = 0.5 in the left and right panels.

The simulation results also indicate that the scaling derived ana-

lytically in GNL18 and found numerically in Budnik et al. (2010)

holds from Γu = 6 up to Γu = 20. At Γu = 2 we find somewhat de-

parture from this scaling. This is expected since the scaling is valid

in the relativitic limit.

The non-monotonic behaviour of the shock width implies that

physical shock width (∆x or equivalently ∆τ̃) has an absolute min-

imum. From our simulations we estimate that it occurs around

Γu = 2 (see right panel in Fig. 3).

3.2 Spectrum

Fig. 4 displays the angle-integrated spectral energy distribution

(SED), as seen in the shock frame, at two locations in the immedi-

ate downstream, as indicated. (The angle dependent SED is shown

for illustration in Fig. 5 for Γu = 20 at τ∗ = 2.5.) All spectra ex-

hibit substantial deviations from black body, as expected for fast

RMS having βu > 0.05 (see discussion above). The portion of the

spectrum below the peak is much softer than that of a Planckian

(νIν ∝ ν3) in all cases. It is produced by thermal Comptonization

of soft photons that are continuously generated by bremsstrahlung

emissions. The transition to the Planck regime occurs at a fre-

quency (seen here only for βu = 0.1) below which absorption be-

comes fast enough. This break frequency generally increases with

decreasing downstream temperature (or shock velocity), and for the

spectra exhibited in Fig. 4 is about 20 eV for βu = 0.1 and 1 eV for

βu = 0.5. The overall spectrum slowly evolves towards a black body

spectrum as the radiation is advected away from the shock, but full

thermodynamic equilibrium is established only relatively far down-

stream, as demonstrated in Fig. 6 for mildly relativistic shocks (see

also Fig. D1 for βu = 0.1). This can greatly affect the detection rate

of fast Newtonian and relativistic breakouts, since the flux in the

optical band during the breakout phase is larger by up to several

orders of magnitudes than that naively anticipated by invoking a

Wien spectrum (see Section 4 below).

The spectrum above the peak is well fitted by an exponen-

tial cut-off for βu = 0.1, but exhibits an extension in the relativis-

tic regime (already noticeable at βu = 0.5, see Fig. 6), that be-

comes increasingly more prominent at increasingly larger Lorentz

factors, extending up to ∼ Γ2
umec

2. The origin of this power law
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Figure 3. Pair loaded Thomson optical depth (left) and dimensionless width (right) of the shock transition layer. Here the shock width ∆x, as measured in the

shock frame, is defined as the distance from the location where (Γβ)/(Γuβu) = 0.9 to the subshock, or to the downstream point where (Γβ)/(Γdβd) = 1.1 when

a subshock is absent. The red triangles show the results obtained from the simulations. The dotted and dashed lines delineate the scaling anticipated in the
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10-4

10-3

10-2

10-1

100

101

101 102 103 104 105 106 107 108 109

(e
u,

la
b 

c)
-1

 ∫ 
νI
ν 

dΩ

h ν (eV)

10-4

10-3

10-2

10-1

100

101

101 102 103 104 105 106 107 108 109

(e
u,

la
b 

c)
-1

 ∫ 
νI
ν 

dΩ

h ν (eV)

Γu=20
Γu=10
Γu=6
Γu=2

βu=0.5
βu=0.1

Wien

τ * 0 ~~ τ * 2.5 ~~

Figure 4. Shock-frame, local, angle integrated SEDs, c−1
∫

νIνdΩ, normalized by the total kinetic energy density of the far upstream flow, eu = Γu(Γu −
1)numpc2. The left and right panels correspond to the downstream locations τ∗ ≈ 0 and τ∗ ≈ 2.5, respectively. The blue, black, magenta, brown, green and red

lines show the results for βu = 0.1, 0.5, and Γu = 2, 6, 10 and 20, respectively. The dotted lines delineate the Wien spectra for the βu = 0.1 and βu = 0.5 cases.

tail is bulk Comptonization of counterstreaming photons in the de-

celeration zone. However, this high energy component is strongly

beamed along the flow (see Fig. 5), and is present only in a beam

that subtends an angle of ∼ 1/Γu around the flow direction. As a

consequence, it is unlikely to be seen in highly relativistic break-

outs (since we observe the counterstreaming photons that escape

through the upstream region). However, it might have some ef-

fect on the observed spectrum in mildly relativistic breakouts from

aspherical shocks. It should be also noted that, while the beamed

component is difficult to be observed, certain extension from expo-

nential cut-off is likely to be observed even in the spherical breakout

for βu ! 0.5. This can be confirmed in the lower panels of Fig. 6

which show the spectra of counterstreaming photons.

3.3 Comparison with previous works

As a check on our results, we compared the shock structure ob-

tained in the simulations with analytical and numerical solutions

reported in the literature. In the upper panel of Fig. 7 we show

a comparison of the Lorentz factor profiles obtained in our sim-

ulations for Γu = 6, 10 and 20 with those computed numerically

by Budnik et al. (2010). As seen, broad agreement is found in all

cases. It should be noted, however, that our simulations systemati-

cally find somewhat steeper profile (faster deceleration). One pos-

sible reason for this discrepancy might be the optimaization of the

cross sections in their numerical analysis (see Appendix E for de-

tails). We stress that our code employs the full Klein-Nishina cross

sections for Compton scattering and pair production, thus likely

producing more accurate results. Moreover, the current simulations

have advantage in that we cover a larger computational domain to

avoid any effects related to boundary conditions. We also find that

the flexibility of the Monte-Carlo method enables us to resolve the

momentum distribution of photons with a higher precision since we

inject sufficiently large number of particles6 to minimize statistical

errors.

6 In each simulation, more than 109 particles are injected.
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・Peak energy is regulated at  
    ~3kTd ~ 600 keV for Γu >> 1 

・Prominent non-thermal tail due to   
    bulk Comptonization for Γu >> 1 
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    Blackbody below the peak fν ∝~ ν0     

 quasi-saturated Compton 
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Possible origin: Shock breakout from an extended envelope driven by choked jet      
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lines show the results for βu = 0.1, 0.5, and Γu = 2, 6, 10 and 20, respectively. The dotted lines delineate the Wien spectra for the βu = 0.1 and βu = 0.5 cases.

tail is bulk Comptonization of counterstreaming photons in the de-

celeration zone. However, this high energy component is strongly

beamed along the flow (see Fig. 5), and is present only in a beam

that subtends an angle of ∼ 1/Γu around the flow direction. As a

consequence, it is unlikely to be seen in highly relativistic break-

outs (since we observe the counterstreaming photons that escape

through the upstream region). However, it might have some ef-

fect on the observed spectrum in mildly relativistic breakouts from

aspherical shocks. It should be also noted that, while the beamed

component is difficult to be observed, certain extension from expo-

nential cut-off is likely to be observed even in the spherical breakout

for βu ! 0.5. This can be confirmed in the lower panels of Fig. 6

which show the spectra of counterstreaming photons.

3.3 Comparison with previous works

As a check on our results, we compared the shock structure ob-

tained in the simulations with analytical and numerical solutions

reported in the literature. In the upper panel of Fig. 7 we show

a comparison of the Lorentz factor profiles obtained in our sim-

ulations for Γu = 6, 10 and 20 with those computed numerically

by Budnik et al. (2010). As seen, broad agreement is found in all

cases. It should be noted, however, that our simulations systemati-

cally find somewhat steeper profile (faster deceleration). One pos-

sible reason for this discrepancy might be the optimaization of the

cross sections in their numerical analysis (see Appendix E for de-

tails). We stress that our code employs the full Klein-Nishina cross

sections for Compton scattering and pair production, thus likely

producing more accurate results. Moreover, the current simulations

have advantage in that we cover a larger computational domain to

avoid any effects related to boundary conditions. We also find that

the flexibility of the Monte-Carlo method enables us to resolve the

momentum distribution of photons with a higher precision since we

inject sufficiently large number of particles6 to minimize statistical

errors.

6 In each simulation, more than 109 particles are injected.
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Figure 1. Velocity profiles of RMS with upstream velocities βu = 0.1 (left) and βu = 0.25 (right), plotted as functions of the normalized optical depth
τ̂ = βu

∫
nσT dx. The solid black line in each panel displays the simulation result for the infinite shock, while the green, cyan, magenta, blue, and red lines depict

the results for finite shocks with downstream velocities βd/βd, inf = 0.95, 0.8, 0.6, 0.4, and 0.25, respectively, where βd, inf denotes the downstream velocity
of the infinite shock (fesc = 0). The resulting escape fraction obtained in each simulations is indicated in the figure legends. The grey dashed line marks the
analytical infinite shock solution and the grey dotted lines are the corresponding analytical finite shock solutions obtained for the values of fesc and α found in
the simulations. The values of α used for the fits are 14.2 and 5.6 for βu = 0.1 and 0.25, respectively, independent of fesc.

we also compute a subset of RMS solutions with nu = 1012 cm−3 for
each βu.

Before going to the results, let us briefly mention on the validity of
the steady-state and planar geometry assumptions. Shock breakout
commences when the optical depth of the RMS becomes to that ahead
of the shock. In a wind-like medium in which the density declines
gradually with radius n∝r−2, the physical length scale of the RMS
lsh ∼ (βuσ Tn)−1 at the breakout is comparable to the shock radius,
where σ T is Thomson cross-section. Under such a circumstance, the
steady-state approximation is expected to be valid, since the change
in the upstream density within a shock crossing time ∼lsh/(βuc) is
not significant. On the other hand, the effects of non-planar geometry
may alter the shock solution. The detail calculation on this issue
is currently not feasible and should be explored in future study.
Nevertheless, we do not expect that the overall spectral features
found in the current simultations are significantly modified (see Ioka
et al. 2019, for discussions on the possible effects).

3 TH E S T RU C T U R E O F R M S W I T H E S C A P E

As shown in our previous study (ILN20), the properties of infinite
RMS are vastly different in the subrelativistic and the relativistic
regimes. This holds true also for finite shocks. Below, we discuss
the properties of finite subrelativistic RMS (βu = 0.1 and 0.25) and
mildly relativistic RMS (βu = 0.5) separately.

3.1 Subrelativistic RMS

In Fig. 1, we plot the velocity profiles of infinite and finite fast
Newtonian RMS (βu = 0.1 and 0.25) as a function of the normalized
optical depth, defined as τ̂ = βu

∫
nσT dx, for a wide range of escape

fractions, up to fesc ∼ 0.7. For this range of fesc, all solutions were
found to have a smooth profile without a subshock. For an infinite
shock, the width of the shock transition layer, lsh is determined by
the diffusion length of the photons (σ Tnulsh ≈ 1/βu). Photon leakage
is anticipated when the optical depth of the shock becomes smaller
than this value. Consequently, as fesc increases the shock width is
expected to become narrower. This trend is clearly seen in Fig. 1.

In Fig. 1, we also plot the analytic RMS solutions (dotted lines)
derived using the model outlined in Ioka et al. (2019). These analytic
solutions are characterized by a dimensionless free parameter that
fixes the radiation pressure at the upstream boundary. It is given
explicitly as:

α = fesc

2pesc
, (2)

where pesc = Pesc/(%2
unumpβ2

uc2) is the momentum flux of the
photons normalized by the baryon momentum flux at the upstream.
For each of the analytic solutions depicted in Fig. 1, we adopted an α-
value that was self-consistently determined from the simulation with
same escape fraction. Interestingly, we find that for a given choice of
βu the value of alpha thereby obtained is independent of the escape
fraction fesc. For βu = 0.1 (0.25), the finite shock simulations yield
α = 14.2 (5.6), with less than 1 per cent deviation, for all the cases
explored in the current study.

As already shown in our previous paper, there is excellent
agreement between the numerical and analytical solutions of an
infinite shock with βu = 0.1. As for an infinite shock with βu =
0.25, the analytic solution was also found to be in good agreement
with the simulations, albeit with notable (though small) deviations
owing to the larger inaccuracy of the diffusion approximation in
this case. The finite shock solutions are also in good agreement
with the simulations, with nearly perfect match for βu = 0.1 and
larger deviations for βu = 0.25. This confirms that the diffusion
approximation is reasonable for fast Newtonian RMS even in the
presence of large radiative losses.

Fig. 2 exhibits the corresponding temperature profiles. The sen-
sitive dependence of the temperature on the upstream velocity seen
in the figure is consistent with previous findings for infinite shocks
(Weaver 1976; Katz et al. 2010, ILN20).3 The decline of the tempera-

3From the current simulations, we find that the temperature roughly scales
as T ∝ β3.4 in the range 0.1 ≤ βu ≤ 0.25. This is slightly steeper than the
dependence T ∝ β3

u found in ILN20 in the range 0.1 ≤ βu ≤ 0.5, since the
regulation of temperature by the vigorous pair production is already important
at βu = 0.5.
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Figure 1. Velocity profiles of RMS with upstream velocities βu = 0.1 (left) and βu = 0.25 (right), plotted as functions of the normalized optical depth
τ̂ = βu

∫
nσT dx. The solid black line in each panel displays the simulation result for the infinite shock, while the green, cyan, magenta, blue, and red lines depict

the results for finite shocks with downstream velocities βd/βd, inf = 0.95, 0.8, 0.6, 0.4, and 0.25, respectively, where βd, inf denotes the downstream velocity
of the infinite shock (fesc = 0). The resulting escape fraction obtained in each simulations is indicated in the figure legends. The grey dashed line marks the
analytical infinite shock solution and the grey dotted lines are the corresponding analytical finite shock solutions obtained for the values of fesc and α found in
the simulations. The values of α used for the fits are 14.2 and 5.6 for βu = 0.1 and 0.25, respectively, independent of fesc.

we also compute a subset of RMS solutions with nu = 1012 cm−3 for
each βu.

Before going to the results, let us briefly mention on the validity of
the steady-state and planar geometry assumptions. Shock breakout
commences when the optical depth of the RMS becomes to that ahead
of the shock. In a wind-like medium in which the density declines
gradually with radius n∝r−2, the physical length scale of the RMS
lsh ∼ (βuσ Tn)−1 at the breakout is comparable to the shock radius,
where σ T is Thomson cross-section. Under such a circumstance, the
steady-state approximation is expected to be valid, since the change
in the upstream density within a shock crossing time ∼lsh/(βuc) is
not significant. On the other hand, the effects of non-planar geometry
may alter the shock solution. The detail calculation on this issue
is currently not feasible and should be explored in future study.
Nevertheless, we do not expect that the overall spectral features
found in the current simultations are significantly modified (see Ioka
et al. 2019, for discussions on the possible effects).

3 TH E S T RU C T U R E O F R M S W I T H E S C A P E

As shown in our previous study (ILN20), the properties of infinite
RMS are vastly different in the subrelativistic and the relativistic
regimes. This holds true also for finite shocks. Below, we discuss
the properties of finite subrelativistic RMS (βu = 0.1 and 0.25) and
mildly relativistic RMS (βu = 0.5) separately.

3.1 Subrelativistic RMS

In Fig. 1, we plot the velocity profiles of infinite and finite fast
Newtonian RMS (βu = 0.1 and 0.25) as a function of the normalized
optical depth, defined as τ̂ = βu

∫
nσT dx, for a wide range of escape

fractions, up to fesc ∼ 0.7. For this range of fesc, all solutions were
found to have a smooth profile without a subshock. For an infinite
shock, the width of the shock transition layer, lsh is determined by
the diffusion length of the photons (σ Tnulsh ≈ 1/βu). Photon leakage
is anticipated when the optical depth of the shock becomes smaller
than this value. Consequently, as fesc increases the shock width is
expected to become narrower. This trend is clearly seen in Fig. 1.

In Fig. 1, we also plot the analytic RMS solutions (dotted lines)
derived using the model outlined in Ioka et al. (2019). These analytic
solutions are characterized by a dimensionless free parameter that
fixes the radiation pressure at the upstream boundary. It is given
explicitly as:

α = fesc

2pesc
, (2)

where pesc = Pesc/(%2
unumpβ2

uc2) is the momentum flux of the
photons normalized by the baryon momentum flux at the upstream.
For each of the analytic solutions depicted in Fig. 1, we adopted an α-
value that was self-consistently determined from the simulation with
same escape fraction. Interestingly, we find that for a given choice of
βu the value of alpha thereby obtained is independent of the escape
fraction fesc. For βu = 0.1 (0.25), the finite shock simulations yield
α = 14.2 (5.6), with less than 1 per cent deviation, for all the cases
explored in the current study.

As already shown in our previous paper, there is excellent
agreement between the numerical and analytical solutions of an
infinite shock with βu = 0.1. As for an infinite shock with βu =
0.25, the analytic solution was also found to be in good agreement
with the simulations, albeit with notable (though small) deviations
owing to the larger inaccuracy of the diffusion approximation in
this case. The finite shock solutions are also in good agreement
with the simulations, with nearly perfect match for βu = 0.1 and
larger deviations for βu = 0.25. This confirms that the diffusion
approximation is reasonable for fast Newtonian RMS even in the
presence of large radiative losses.

Fig. 2 exhibits the corresponding temperature profiles. The sen-
sitive dependence of the temperature on the upstream velocity seen
in the figure is consistent with previous findings for infinite shocks
(Weaver 1976; Katz et al. 2010, ILN20).3 The decline of the tempera-

3From the current simulations, we find that the temperature roughly scales
as T ∝ β3.4 in the range 0.1 ≤ βu ≤ 0.25. This is slightly steeper than the
dependence T ∝ β3

u found in ILN20 in the range 0.1 ≤ βu ≤ 0.5, since the
regulation of temperature by the vigorous pair production is already important
at βu = 0.5.
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Good agreement with analytical solution based on diffusion approximation 
(Ioka, Levinson & Nakar 2019)

Temperature decreases as escape energy increases due to the 
increase in the photons produced within diffusion length
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Figure 2. Temperature profiles obtained for the solutions in Fig. 1. Note that the extent of the horizontal axis is larger than in Fig. 1.

Figure 3. Velocity profiles of RMS with an upstream velocity βu = 0.5,
plotted as functions of the normalized pair-loaded optical depth τ ∗ = βu

∫
#(n

+ n±)σ Tdx. The profiles depicted by the solid black (infinite shock) and green
lines are found to be smooth (contain no subshock). The cyan, brown, ma-
genta, blue, and red lines show the simulation results for finite shocks that con-
tain a subshock. The resulting escape fractions are given in the figure legends.

ture with increasing losses (larger values of fesc) is consistent with the
trend found in Ioka et al. (2019). The reason for this behaviour is that
larger losses give rise to a higher compression ratio (i.e. a smaller
downstream velocity) and, consequently, a larger diffusion length
behind the shock which, in turn, enhances photon production in the
immediate downstream. Our simulations confirm that the decline in
temperature during a gradual breakout is a robust feature.

3.2 Mildly relativistic RMS

The velocity profiles of RMS with βu = 0.5 and different escape
fractions are displayed in Fig. 3. In this regime, the diffusion
approximation adopted in Ioka et al. (2019) is totally inapplicable,
hence analytic solutions cannot be obtained. Moreover, the shock
opacity is dominated by newly created pairs (Fig. 4.) and, therefore,
the solutions are given as functions of the normalized pair loaded
optical depth, τ ∗ = βu

∫
#(n + n±)σ Tdx.

As in the previous cases, the shock transition layer becomes
narrower as the escape fraction increases. On the other hand, unlike
the previous cases, solutions with sufficient losses (more than a few

Figure 4. Profiles of temperature (top) and pair-to-baryon ratio (bottom)
obtained for the solutions shown in Fig. 3. Note the larger extent of the
horizontal axis.

percents) exhibit a subshock. As seen in the figure, the strength of
the subshock increases with increasing fesc, becoming quite large as
fesc approaches 0.5.

The profiles of the temperature and pair-loading parameter (pair-
to-baryon ratio) are shown in Fig. 4. As seen, unlike in fast Newtonian
shocks, the immediate downstream temperature in this case is
practically independent of fesc. This is a consequence of temperature
regulation by exponential pair creation (for a detailed explanation
of this effect see Levinson & Nakar 2020, and references therein).
The spikes seen in the temperature curves correspond to overheated
plasma immediately behind the subshock. Since the subshock is
collisionless, heating of the plasma occurs on kinetic scales which are
vanishingly small. The width of the spike is thus determined by the
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Figure 2. Temperature profiles obtained for the solutions in Fig. 1. Note that the extent of the horizontal axis is larger than in Fig. 1.

Figure 3. Velocity profiles of RMS with an upstream velocity βu = 0.5,
plotted as functions of the normalized pair-loaded optical depth τ ∗ = βu

∫
#(n

+ n±)σ Tdx. The profiles depicted by the solid black (infinite shock) and green
lines are found to be smooth (contain no subshock). The cyan, brown, ma-
genta, blue, and red lines show the simulation results for finite shocks that con-
tain a subshock. The resulting escape fractions are given in the figure legends.

ture with increasing losses (larger values of fesc) is consistent with the
trend found in Ioka et al. (2019). The reason for this behaviour is that
larger losses give rise to a higher compression ratio (i.e. a smaller
downstream velocity) and, consequently, a larger diffusion length
behind the shock which, in turn, enhances photon production in the
immediate downstream. Our simulations confirm that the decline in
temperature during a gradual breakout is a robust feature.

3.2 Mildly relativistic RMS

The velocity profiles of RMS with βu = 0.5 and different escape
fractions are displayed in Fig. 3. In this regime, the diffusion
approximation adopted in Ioka et al. (2019) is totally inapplicable,
hence analytic solutions cannot be obtained. Moreover, the shock
opacity is dominated by newly created pairs (Fig. 4.) and, therefore,
the solutions are given as functions of the normalized pair loaded
optical depth, τ ∗ = βu

∫
#(n + n±)σ Tdx.

As in the previous cases, the shock transition layer becomes
narrower as the escape fraction increases. On the other hand, unlike
the previous cases, solutions with sufficient losses (more than a few

Figure 4. Profiles of temperature (top) and pair-to-baryon ratio (bottom)
obtained for the solutions shown in Fig. 3. Note the larger extent of the
horizontal axis.

percents) exhibit a subshock. As seen in the figure, the strength of
the subshock increases with increasing fesc, becoming quite large as
fesc approaches 0.5.

The profiles of the temperature and pair-loading parameter (pair-
to-baryon ratio) are shown in Fig. 4. As seen, unlike in fast Newtonian
shocks, the immediate downstream temperature in this case is
practically independent of fesc. This is a consequence of temperature
regulation by exponential pair creation (for a detailed explanation
of this effect see Levinson & Nakar 2020, and references therein).
The spikes seen in the temperature curves correspond to overheated
plasma immediately behind the subshock. Since the subshock is
collisionless, heating of the plasma occurs on kinetic scales which are
vanishingly small. The width of the spike is thus determined by the
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Spectra of escaped photons  
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Figure 7. Shock-frame, flux density of escaping photons, fν = − dFesc
dν ,

normalized by the total kinetic energy flux of baryons at the upstream
boundary, Fb = "u("u − 1)numpc3βu. The top, middle, and bottom panels
display the results for shock velocities βu = 0.1, 0.25, and 0.5, respectively.
The different lines in each panel correspond to different values of the escape
fraction, as indicated.

decline of the downstream temperature (see Fig. 2). For a shock with
βu = 0.1 (0.25), the spectral peak evolves in the soft, Ep ∼ 1keV
(hard, Ep ∼ 10 keV), X-ray band. As discussed in Ioka et al. (2019),
the superposition of emission during the hard-to-soft evolution may
account for the time integrated, non-thermal spectrum observed in
the shock breakout candidate XRT080109 (Soderberg et al. 2008). In
contrast to the fast Newtonian shocks, the mildly relativistic (βu =
0.5) shock shows no softening, with Ep maintained around ∼200 keV

during the luminosity rise. This is again a consequence of the pair
thermostat mentioned in the previous section.

The spectral shapes are determined by the quasi-saturated Comp-
toization of photons that are produced throughout the shock via
thermal bremsstrahlung process. A notable feature common to all
spectra is the sudden change is slope below the peak. While the
portion of the spectrum around the peak (the bump) has a Wien
shape (Iν∝ν3exp(− hν/kT)),4 the soft tail below the peak has a
spectral slope close to that of free–free emission, Iν∝ν0, extending
down to the break frequency below which the free–free absorption is
fast enough to establish a full thermodynamic equilibrium (and the
spectrum hardens to a blackbody slope). As discussed in ILN20,
the existence of a substantial soft tail implies that the breakout
signal well below the spectral peak should be much brighter (by
orders of magnitude) than that naively expected by invoking a Wien
spectrum in the entire spectral range. This has important implications
for detection limits in optical/UV band and the interpretation of shock
breakout signals (see Section 5 for detailed calculations).

Regarding the spectral portion above the peak, we find no notable
deviations from a Wien spectrum. Hence, an exponential cut-off
at high energies is likely to be a robust feature of (planar) fast
Newtonian and, perhaps, mildly relativistic shocks at breakout. Note,
however, that following the breakout episode the shock transforms
into a collisionless shock that keeps propagating in the optically thick
medium; during this phase a power-law spectrum is expected, as
discussed in Svirski & Nakar (2014a). The results of our simulations
indicate that, contrary to previous claims (Wang et al. 2007; Suzuki
& Shigeyama 2010), bulk Comptonization is unlikely to be the
origin of the high-energy, non-thermal tail observed in XRT080109.
It is worth noting that for the βu = 0.5 shock, slight hardening
of the spectrum may occur when the losses exceed the values
explored here (fesc = 0.45). Such deviations are indeed indicated
by preliminary calculations with larger escape fractions. However,
we find that when fesc > 0.45, the subshock becomes exceedingly
strong and intermittent, and the simulation does not converge to
a steady-state solution.5 This might suggests that the transition to
the collisionless regime becomes fully dynamic, likely involving
turbulence and other stochastic effects. In this regard, it is worth
pointing out that the strong subshock may give rise to efficient particle
acceleration. Once the energy dissipated in the subshock amounts to
a considerable fraction of the total shock energy, Compton scattering
and synchrotron emission by the accelerated pairs may significantly
modify the high-energy portion of the spectrum, conceivably giving
rise to a non-thermal gamma-ray flash. We defer the exploration of
such effects to a future work.

4.1 Dependence of spectrum on the upstream density

A comparison of spectra obtained for shocks with upstream densities
nu = 1015 and 1012 cm−3 is given in Fig. 8. As seen, the main effect
is a shift of the spectrum to lower energies as the upstream density
decreases, with a little change in the overall spectral shape. This
behaviour stems from the dependence of the downstream temperature

4This bump is more prominent in faster shocks, for which the departure from
thermodynamic equilibrium is larger. For the cases studied here we find that
the Wien spectrum provides a good fit for the entire bump only for βu = 0.25
and 0.5. For βu = 0.1, it can only fit the spectral portion above the peak (hν

! Ep).
5To be concrete, for any number of iterations, the simulation cannot find a
steady profile which satisfies energy-momentum conservation to within an
error of a few per cent.
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Figure 7. Shock-frame, flux density of escaping photons, fν = − dFesc
dν ,

normalized by the total kinetic energy flux of baryons at the upstream
boundary, Fb = "u("u − 1)numpc3βu. The top, middle, and bottom panels
display the results for shock velocities βu = 0.1, 0.25, and 0.5, respectively.
The different lines in each panel correspond to different values of the escape
fraction, as indicated.

decline of the downstream temperature (see Fig. 2). For a shock with
βu = 0.1 (0.25), the spectral peak evolves in the soft, Ep ∼ 1keV
(hard, Ep ∼ 10 keV), X-ray band. As discussed in Ioka et al. (2019),
the superposition of emission during the hard-to-soft evolution may
account for the time integrated, non-thermal spectrum observed in
the shock breakout candidate XRT080109 (Soderberg et al. 2008). In
contrast to the fast Newtonian shocks, the mildly relativistic (βu =
0.5) shock shows no softening, with Ep maintained around ∼200 keV

during the luminosity rise. This is again a consequence of the pair
thermostat mentioned in the previous section.

The spectral shapes are determined by the quasi-saturated Comp-
toization of photons that are produced throughout the shock via
thermal bremsstrahlung process. A notable feature common to all
spectra is the sudden change is slope below the peak. While the
portion of the spectrum around the peak (the bump) has a Wien
shape (Iν∝ν3exp(− hν/kT)),4 the soft tail below the peak has a
spectral slope close to that of free–free emission, Iν∝ν0, extending
down to the break frequency below which the free–free absorption is
fast enough to establish a full thermodynamic equilibrium (and the
spectrum hardens to a blackbody slope). As discussed in ILN20,
the existence of a substantial soft tail implies that the breakout
signal well below the spectral peak should be much brighter (by
orders of magnitude) than that naively expected by invoking a Wien
spectrum in the entire spectral range. This has important implications
for detection limits in optical/UV band and the interpretation of shock
breakout signals (see Section 5 for detailed calculations).

Regarding the spectral portion above the peak, we find no notable
deviations from a Wien spectrum. Hence, an exponential cut-off
at high energies is likely to be a robust feature of (planar) fast
Newtonian and, perhaps, mildly relativistic shocks at breakout. Note,
however, that following the breakout episode the shock transforms
into a collisionless shock that keeps propagating in the optically thick
medium; during this phase a power-law spectrum is expected, as
discussed in Svirski & Nakar (2014a). The results of our simulations
indicate that, contrary to previous claims (Wang et al. 2007; Suzuki
& Shigeyama 2010), bulk Comptonization is unlikely to be the
origin of the high-energy, non-thermal tail observed in XRT080109.
It is worth noting that for the βu = 0.5 shock, slight hardening
of the spectrum may occur when the losses exceed the values
explored here (fesc = 0.45). Such deviations are indeed indicated
by preliminary calculations with larger escape fractions. However,
we find that when fesc > 0.45, the subshock becomes exceedingly
strong and intermittent, and the simulation does not converge to
a steady-state solution.5 This might suggests that the transition to
the collisionless regime becomes fully dynamic, likely involving
turbulence and other stochastic effects. In this regard, it is worth
pointing out that the strong subshock may give rise to efficient particle
acceleration. Once the energy dissipated in the subshock amounts to
a considerable fraction of the total shock energy, Compton scattering
and synchrotron emission by the accelerated pairs may significantly
modify the high-energy portion of the spectrum, conceivably giving
rise to a non-thermal gamma-ray flash. We defer the exploration of
such effects to a future work.

4.1 Dependence of spectrum on the upstream density

A comparison of spectra obtained for shocks with upstream densities
nu = 1015 and 1012 cm−3 is given in Fig. 8. As seen, the main effect
is a shift of the spectrum to lower energies as the upstream density
decreases, with a little change in the overall spectral shape. This
behaviour stems from the dependence of the downstream temperature

4This bump is more prominent in faster shocks, for which the departure from
thermodynamic equilibrium is larger. For the cases studied here we find that
the Wien spectrum provides a good fit for the entire bump only for βu = 0.25
and 0.5. For βu = 0.1, it can only fit the spectral portion above the peak (hν

! Ep).
5To be concrete, for any number of iterations, the simulation cannot find a
steady profile which satisfies energy-momentum conservation to within an
error of a few per cent.

MNRAS 499, 4961–4971 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/499/4/4961/5921221 by R
IKEN

 user on 16 D
ecem

ber 2020

・Ep decreases during the breakout due to the increase in the photon number for βu <~0.2    

       Possible origin for the non-thermal spectrum of XRT080109 (Ioka et al. 2019), bulk Compton origin is unlikely  

・Ep is stable for βu ~0.5, due to regulation by pairs 

 ・Substantially softer than Wien or Blackbody below the peak fν ∝~ ν0  
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Application to shock breakout in wind (ρ∝r-2)  

・βu ~ 0.2 predicts luminosity range and spectral evolution compatible with XRT080109 
          Ep ~ 5keV around the peak is predicted, implying rising phase is harder than the decay (Svirski & Nakar 2014),  
          Compatible with analysis of Soderberg 2008 which finds significant spectral softening 

 ・ βu ~ 0.1 - 0.35 (Ep ~0.3 - 10 keV) shock breakout is detectable by eRosita ~ 1/yr  
        Assumption: thick wind breakout is common for type Ib/c SNe ~ 2.5 x 104 Gpc-3yr-1 

・ Substantially brighter emission than the naive estimation (Wien) is found in UV/Optical, but still too faint to 　　
　 be detectable (MAB ~ -9) 

Fast and mildly relativistic shock breakout 4967

Figure 8. Same as Fig. 7, but for comparison between nu = 1015 cm−3 (solid
lines) and nu = 1012 cm−3 (dotted lines) at a nearly identical escape fraction.

on density (see Figs 5 and 6). The shift is smaller the larger the shock
velocity is, and is practically absent in the βu = 0.5 case.

An important consequence of this dependence is that the relative
brightness of emission below the peak increases substantially with
decreasing density (in other words, the ratio between the bolometric
luminosity and the luminosity emitted in some band below the peak
decreases with decreasing density). For example, for βu = 0.1 (0.25),
the ratio between the luminosity at the peak and the optical luminosity
(at ∼1 eV) decreases by a factor of about 10 (5) as the density
decreases from nu = 1015 to 1012 cm−3. Hence, shock breakout in
a lower density environment is preferential for the detection of the
optical/UV source.

Another effect caused by the change in density is found in
the break frequency below which free–free absorption becomes
important. Since the photon density is much lower in the lower
density simulation, the break occurs at a lower frequency. Note that
the large contrast in the photon number density is not apparent from
the figure, since the displayed spectrum is normalized by the baryon
energy flux Fb.

5 L I G H T C U RV E O F S P H E R I C A L S H O C K
B R E A KO U T F RO M A ST E L L A R W I N D

In this section, we present approximate calculations of shock break-
out light curves at different bands by combining the results of the
previous section with a model for blast wave propagation in a wind.

The dynamics of the shock, and in particular the energy deposition
profile, depend on the properties of the ejecta, that should be given
as input for the calculations of the shock evolution in the wind. A
common choice is the self-similar solution of Sakurai (1960) that
provides a good approximation for the structure of the shocked layer
near the edge of the envelope of the progenitor following the passage
of shock. The energy profile within the ejecta, obtained from the
Sakurai (1960) solution, cab be expressed in terms of the ejecta
velocity, v, as:

E(v) = E0(v/v0)−λ = 4πcv0

κ
R2

∗(v/v0)λ, (3)

where v0 and E0 = 4πcv0R
2
∗/κ are, respectively, the velocity and

energy of the front shell of optical thickness c/v0 (Nakar & Sari
2010), and κ denotes the opacity of the stellar envelope. The index
λ depends on the power-law index n∗ of the envelope density profile
near the edge as: λ = (1 + 0.62n∗)/0.19n∗. For typical envelopes
n∗ = 1–3, wherein n∗ ≈ 1.5 for convective envelopes and n∗ ≈
3 for radiative envelopes. Henceforth, we choose n∗ = 3 and κ =
0.2 cm2 g−1, which is suitable for Wolf–Rayet stars. With this choice
(Nakar & Sari 2010) λ = 5,

E0 ≈ 1.6 × 1044 erg
(

Eexp

1051 erg

)0.58

×
(

M∗

5 M&

)−0.41 (
R∗

1011 cm

)1.66

, (4)

and

v0 ≈ 0.3c

(
Eexp

1051 erg

)0.58 (
M∗

5 M&

)−0.41 (
R∗

1011 cm

)−0.33

, (5)

where Eexp and M∗ denote the explosion energy and the mass of the
ejecta, respectively.

In cases where the progenitor is surrounded by an optically thick
wind (τw > c/v0), the shock driven into the wind by the expanding
ejecta remains radiation mediated. The subsequent shock dynamics
is dictated by the density profile of the wind. We shall invoke a
spherical wind with a density profile ρw∝r−2. The total mass swept
up by the shock as it reaches a radius rs is ms =

∫ rs
R∗

4πr2ρwdr ≈
(4πτwR∗/κw)rs , where κw is the opacity of the wind, henceforth
assume to be equal to the envelope opacity, κw = κ , and the swept up
energy is Es = msv

2
s , where vs is the shock velocity at rs. Equating

Es with the energy injected into the shock by the ejecta, E(vs), yields
vs(rs) = v0(cR∗/v0τwrs)1/(λ + 2). We find it convenient to express the
result in terms of the local optical depth, τ s = τw(R∗/rs), rather than
rs. Using λ = 5 and equations (4) and (5), we obtain
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Es ≈ 1.7 × 1045 erg
(

Eexp

1051 erg

)(
M∗

5 M$

)−0.72 (
R∗

1011 cm

)1.4

×
( τw

30

)1.4 ( τs

10

)−0.72
, (6)

vs ≈ 0.18c

(
Eexp

1051 erg

)0.5 (
M∗

5 M$

)−0.36 (
R∗

1011 cm

)−0.29

×
( τw

30

)−0.29 ( τs

10

)0.14
. (7)

Note the very weak dependence of vs on τ s. The dynamical time can
be expressed as

t = rs/vs ≈ 55 s
(

Eexp

1051 erg

)−0.5 (
M∗

5 M$

)0.36 (
R∗

1011 cm

)1.29

×
( τw

30

)1.29 ( τs

10

)−1.14
. (8)

A rough estimate of the breakout density, ρb = ρw(rb), where rb

denotes the shock radius at breakout, can be obtained as follows:
first we express the wind density in terms of the optical depth as
ρw(τs) = τ 2

s /(κτwR∗). We then substitute the optical depth at the
breakout radius, τ s(rb) = c/vb(1 + f±)−1, into the latter expression,
where vb = vs(rb) and the factor f± denotes the pair-to-baryon ratio
at the shock which is only relevant for βu = 0.5. This yields

ρb & 1.5 × 10−10
( vb

0.1c

)−2 ( τw

30

)−1
(

R∗

1011 cm

)−1

× (1 + f±)−2 gr cm−3. (9)

It is seen that the number density in the breakout zone lies in the
range 1011–1014 cm−3 for anticipated conditions. Note the scaling
vb ∝ ρ0.51

b E0.9
expM

−0.64
∗ and Es ∝ ρ−1.65

b E−0.15
exp M0.1

∗ .
We now use the above results in conjunction with the simulations

to compute light curves in different bands. We adopt the following
procedure: first, we ignore, for simplicity, the dependence of the
shock velocity on τ s and take it to be constant during the breakout
phase, which is justified by virtue of the very weak dependence
in equation (5). For each RMS case simulated, we choose a set of
values for Eexp, M∗, R∗, and τw , for which vs in equation (5) equals
the simulated shock velocity (i.e. βu = vs/c = 0.1, 0.25, or 0.5), as
indicated in the titles of Figs 9–11. Next, we identify τ s with the shock
width, specifically, the pair-unloaded optical depth of the shock, τs =∫ ls

0 nσT dx, measured in the simulations from the upstream boundary
at τ = 0 to the downstream point ls where β = βu/6.5. For each
value of τ s we then obtain the escape fraction fesc from the analysis
in Section 3 (see Figs 1 and 3), and the shock energy and expansion
time from equations (6) and (8). The bolometric luminosity of the
breakout emission at time t is then given by Lbol = fescLs, where
Ls = Es/t denotes the mean change in shock energy with time. The
spectral luminosity is given in terms of the flux density fν shown
in Fig. 7 as Lν = fν(Ls/Fb). Note that

∫ ∞
0 fνdν = fescFb, so that∫ ∞

0 Lνdν = fescLs = Lbol, as required.
We note that for a given velocity βu = vb/c, once a value of the

product τwR∗ is chosen the breakout density is fixed by equation (9).
This means that the upstream density invoked in our simulations
is inconsistent with the breakout density. While the bolometric
luminosity is independent of the density, the spectral luminosity
below the peak does depend on it. Performing additional simulations
with different densities is highly demanding. As a compromise we
exhibit below light curves computed for the densities nu = 1015 and

Figure 9. Estimated light curves based on the simulation results of βu = 0.1.
The assumed model parameters for the shock dynamics are Eexp = 1051 erg,
R∗ = 3 × 1011 cm, M∗ = 10 M$, and τw = 30. In the top panel, the black
solid line shows the bolometric luminosity. In addition, the shock luminosity
is also dispayed with grey dashed line for comparison. The lower panels
display the luminosities at a given band: X-ray (hν = 0.3–10 keV), NUV (λph
= 250 nm), and optical (λph = 650 nm). The dashed black lines are the results
computed from the fiducial simulations which assume nu = 1015 cm−3. The
solid red lines are the light curves duduced for nu = 1012 cm−3. Note that
the bolometric light curve does not vary with the density nu since the shock
structure does not change.

1012 cm−3 employed in the simulations presented in the preceding
sections. For the choice of parameters in Figs 9–11, equation (9)
yields a breakout density of 3 × 1013, 1.5 × 1013, and 1.2 × 1011

cm−3 for βu = 0.1, 0.25, and 0.5, respectively. Note that f± ∼ 10
is employed for βu = 0.5 (see Fig. 4). In practice the density will
decline during the gradual breakout by up to a factor of a few.

In each of Figs 9–11, we show three sets of light curves computed
for the choice of model parameters indicated in each figure title,
which are suitable for Wolf–Rayet stars surrounded by optically
thick wind, that upon exploding release energy in the range Eexp =
1051–1052 erg. From top to bottom, the panels in each figures show
the bolometric, X-ray (hν = 0.3–10 keV), NUV (λph = 250 nm),
and optical (λph = 650 nm) light curves, where λph is the wavelength
of photons. In addition to the light curves produced based on the
fiducial simulations (nu = 1015 cm−3), we also plot the estimates for
nu = 1012 cm−3. Here, we assume that the flux ratio at a given energy

MNRAS 499, 4961–4971 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/499/4/4961/5921221 by R
IKEN

 user on 16 D
ecem

ber 2020

Fast and mildly relativistic shock breakout 4969

Figure 10. Same as Fig. 9, but for βu = 0.25. The assumed model parameters
for the shock dynamics are Eexp = 2 × 1051 erg, R∗ = 1011 cm, M∗ = 5 M#,
and τw = 30.

does not vary largely with the escape fraction, and the estimates
are made by multiplying the fiducial light curves by a constant factor
determined by the flux ratio between the simulations for nu = 1015 and
1012 cm−3 shown in Fig. 8. Given our estimates of breakout density,
realistic light curves are expected to lie between the two shown for
βu = 0.1 and 0.25 but closer to the upper curve (for nu = 1012),
while βu = 0.5 is expected to be slightly above the two curves.
Note that Ls = Es/t ∝ E1.5

expM
−1.1
∗ (τwR∗)0.1 depends very weakly on

the wind’s opacity. Substantially larger luminosities require larger
explosion energies and smaller ejecta mass.

As seen in the figure, while the energy deposition rate Ls declines
with time, the emission becomes brighter as the escape fraction
increases. The bolometric luminosity represents the emission at
X-ray and gamma-rays: ∼keV for βu = 0.1, ∼10 keV for βu =
0.25, and ∼100 keV for βu = 0.5. Although the optical/UV are
much dimmer, it is much brighter than the naive expectation from
Wien spectra as mentioned in the previous section. Since the escape
fraction at the latest time is large (fesc ! 0.5), further increase in
the bolometric luminosity is modest and soon reaches the peak.
Hence, the luminosity and spectrum at the time roughly represent
those at the peak of the shock breakout light curve. Subsequent
evolution enters the cooling envelope emission phase during which
the photons further below the shock transition layer diffuse out

Figure 11. Same as Fig. 9, but for βu = 0.5. The assumed model parameters
for the shock dynamics are Eexp = 1052 erg, R∗ = 1011 cm, M∗ = 5 M#, and
τw = 10.

(Levinson & Nakar 2020). At this phase, the bolometric luminosity
declines gradually with time, typically as power law. The emissions
at a given band shows a complex behaviour due to the temperature
evolution and thermal coupling between the photons and plasma (see
Nakar & Sari 2010, for detail). The detail is beyond the scope of the
current paper and is deferred to future study.

6 C O M PA R I S O N TO SN 2 0 0 8 D / X RT 0 8 0 1 0 9

The leading candidate of an SN shock breakout from a dense stellar
wind is SN2008D/XRT 080109 (Soderberg et al. 2008; Modjaz et al.
2009). The X-ray flash seen in this SN has a rise time of 50–100 s,
followed by a shallow power-law decay that lasts for about 300 s.
The peak luminosity is ∼4 × 1043 erg s−1 and the time-integrated
spectrum over the entire observed emission, which is dominated by
the slow decay phase, is consistent with a flat power law, νFν ≈
constant. After ∼300 s, the X-ray light curve drops sharply.

A shock breakout through a thick wind is one of the leading models
for this X-ray flash, due to its relatively long duration (Chevalier &
Fransson 2008; Balberg & Loeb 2011; Svirski et al. 2012; Svirski
& Nakar 2014a; Ioka et al. 2019). According to this model, the
rising part of the light curve is produced during the shock breakout
episode. The transition to a collisionless shock takes place near the
peak and the shallow power law originates from the propagation
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Initial rising phase of the breakout emission is 
modeled based on analytical model of shock 
propagation
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Summary
first principle simulations of RMS in photon starved regime is performed

・Detail shock structure in fast Newtonian and relativistic shock is computed 

・Anisotropy develops near the shock and give rise to highly non-thermal   
   spectrum and copious pair production for βu > ~0.5 

・Emergence of subshock at relativistic shocks 
　it’s strength increases as energy escape fraction increases 
  
・Spectrum is far from thermal (Wien or Blackbody) even for fast Newtonian   
   shock　βu > ~0.1  
　Substantially softer than Wien or Blackbody below the peak fν ∝~ ν0 

・Fast Newtonian shock breakout may be detectable by eRosita ~ 1 per yr


