The New Fundamental Plane Dictating Galaxy Cluster Evolution

Fujita & Takahara (1999) see also Ota et al. (2006)

Yutaka Fujita (Osaka, Japan)

- Y. Fujita, K. Umetsu, E. Rasia, M. Meneghetti, M. Donahue, E. Medezinski, N. Okabe, & M. Postman, 2018, ApJ, 857, 118
- Y. Fujita, K. Umetsu, S. Ettori, E. Rasia, N. Okabe, & M. Meneghetti, 2018, ApJ, 363, 37
- Y. Fujita, S. Ettori, M. Donahue, K. Umetsu, E. Rasia, M. Meneghetti, E. Medezinski, N. Okabe, & M. Postman, submitted (Review)
- Y. Fujita, H, Aung, & D. Nagai, in preparation

Contents

- Introduction
 - Structure and evolution of galaxy clusters
- Fundamental plane (FP) analysis
 - CLASH and X-ray cluster samples
- Numerical simulations
- Origin of the FP
 - Similarity solution of cluster formation
- Applications
 - Mass-temperature and luminosity-temperature relation of clusters
 - Mass calibration of clusters
- Summary

Structure of Clusters

- Clusters mainly composed of dark matter
- NFW density profile
 - Navarro, Frenk & White (1997)

Inside-out scenario

- Cluster internal structure reflects their growth history
- 1. Fast growth phase
 - Inner region ($r \leq r_s$) rapidly grows through massive matter accretion
- 2. Slow growth phase
 - Outskirts of clusters (r ≥ r_s) slowly grows through moderate matter accretion and the inner structure (r_s, M_s) is preserved during this phase
 - Wechsler et al. (2002), Zhao et al. (2003), Ludlow et al. (2013), Correa et al. (2015), More et al. (2015) (see also Salvador-Solé et al.1998; Fujita & Takahara 1999)

Cluster age in the inside-out scenario

- Cluster formation time
 - Transition time from the fast to the slow growth phase
 - Older cluster have a larger characteristic density, $\rho_s = 3 M_s / (4\pi r_s^3)$
 - The density depends on clusters
 - The density reflects that of the background Universe at the formation time
 - Clusters with larger ρ_s formed earlier
 - (r_s, M_s) or ρ_s does not much change after the formation
 - Navarro et al. (1997), Zhao et al. (2009), Ludlow et al. (2013), Correa et al. (2015)

Concentration Parameter

- $c_{\Delta} = r_{\rm s}/r_{\Delta}$
 - $M_{\Delta} = M(< r_{\Delta})$
 - $3 M_{\Delta}/(4\pi r_{\Delta}^3) = \Delta \rho_c$
 - ρ_c : critical density of the Univ.
 - $\Delta =$ 200 or 500 is often used
- c_{Δ} is a function of M_{Δ} , but has a large dispersion
 - Dispersion of cluster formation time
 - The more concentrated, the older the object is

 c_{Δ} - M_{Δ} relation

Correa et al. (2015)

Inside-out scenario and ICM

- The Inside-out scenario has been studied mainly for simulated dark-matter halos
 - How about real (observed) objects?
 - How about intracluster medium (ICM)?
- We tried to systematically explain the growth of clusters based on the modern inside-out scenario by studying the combination of parameters (r_s, M_s, T_x)
 - $T_{\rm X}$ (X-ray temperature) mainly reflects X-ray emissions at $r \leq r_{\rm s}$ and should be affected by the gravitational potential there

CLASH cluster sample

- 20 massive clusters
 - z = 0.187 0.686
- $r_{\rm s}, M_{\rm s}$
 - Gravitational lensing (HST, Subaru)
 - Umetsu+16
- T_x (core excised)
 - Chandra observations
 - Donahue+14
- We study data distribution in the space of (log r_s, log M_s, log T_x)

Cluster	z	T_s	r_{200}	M_s	M_{200}	T_X
		(kpc)	(kpc)	$(10^{14} M_{\odot})$	$(10^{14}~M_{\odot})$	(keV)
Abell 383	0.187	304^{+159}_{-97}	1800^{+209}_{-189}	$1.4^{+1.0}_{-0.5}$	$7.9^{+3.1}_{-2.2}$	6.5 ± 0.24
Abell 209	0.206	834^{+243}_{-192}	2238^{+161}_{-172}	$5.2^{+2.2}_{-1.6}$	$15.4^{+3.6}_{-3.3}$	7.3 ± 0.54
Abell 2261	0.224	682^{+232}_{-170}	2542^{+192}_{-188}	$5.8^{+2.7}_{-1.8}$	$22.9^{+5.6}_{-4.7}$	7.6 ± 0.30
RX J2129.7+0005	0.234	294^{+133}_{-89}	$1626\substack{+163 \\ -154}$	$1.1\substack{+0.7\\-0.4}$	$6.1^{+2.0}_{-1.6}$	5.8 ± 0.40
Abell 611	0.288	560^{+250}_{-172}	2189^{+204}_{-208}	$3.8^{+2.3}_{-1.5}$	$15.6^{+4.8}_{-4.0}$	7.9 ± 0.35
MS 2137-2353	0.313	784^{+557}_{-357}	2064^{+261}_{-286}	$4.7^{+5.2}_{-2.6}$	$13.4^{+5.8}_{-4.9}$	5.9 ± 0.30
RX J2248.7-4431	0.348	643^{+422}_{-246}	2267^{+282}_{-261}	$4.9^{+4.8}_{-2.3}$	$18.5^{+7.8}_{-5.7}$	12.4 ± 0.60
MACS J1115.9+0129	0.352	738^{+249}_{-196}	2186^{+161}_{-174}	$5.1^{+2.4}_{-1.7}$	$16.6^{+4.0}_{-3.7}$	8.0 ± 0.40
MACS J1931.8-2635	0.352	501^{+441}_{-221}	2114^{+355}_{-311}	$3.5_{-1.8}^{+4.6}$	$15.0^{+8.9}_{-5.7}$	6.7 ± 0.40
RX J1532.9+3021	0.363	293^{+433}_{-114}	1544^{+191}_{-210}	$1.2^{+1.6}_{-0.5}$	$5.9^{+2.5}_{-2.1}$	5.5 ± 0.40
MACS J1720.3+3536	0.391	505^{+248}_{-162}	2055^{+204}_{-204}	$3.4_{-1.4}^{+2.3}$	$14.4_{-3.9}^{+4.7}$	6.6 ± 0.40
MACS J0416.1-2403	0.396	642^{+201}_{-156}	1860^{+146}_{-154}	$3.4^{+1.5}_{-1.1}$	$10.7^{+2.7}_{-2.4}$	7.5 ± 0.80
MACS J0429.6-0253	0.399	394^{+238}_{-143}	1792^{+225}_{-208}	$2.1^{+1.8}_{-0.9}$	$9.6^{+4.1}_{-3.0}$	6.0 ± 0.44
MACS J1206.2-0847	0.440	587^{+248}_{-176}	2181^{+165}_{-178}	$4.6^{+2.4}_{-1.7}$	$18.1_{-4.1}^{+4.4}$	10.8 ± 0.60
MACS J0329.7-0211	0.450	254^{+95}_{-63}	1697^{+129}_{-127}	$1.4_{-0.4}^{+0.6}$	$8.6^{+2.1}_{-1.8}$	8.0 ± 0.50
RX J1347.5-1145	0.451	840^{+339}_{-239}	2684^{+226}_{-230}	$9.8^{+5.6}_{-3.6}$	$34.2^{+9.4}_{-8.1}$	15.5 ± 0.60
MACS J1149.5+2223	0.544	1108^{+404}_{-291}	2334^{+169}_{-178}	$10.8^{+5.4}_{-3.7}$	$25.0^{+5.8}_{-5.3}$	8.7 ± 0.90
MACS J0717.5+3745	0.548	1300^{+347}_{-271}	2387^{+154}_{-165}	$13.2^{+5.3}_{-3.9}$	$26.8^{+5.6}_{-5.2}$	12.5 ± 0.70
MACS J0647.7+7015	0.584	468^{+254}_{-160}	1884^{+189}_{-192}	$3.3^{+2.3}_{-1.3}$	$13.7^{+4.6}_{-3.8}$	13.3 ± 1.80
MACS J0744.9+3927	0.686	574^{+269}_{-102}	1982^{+179}_{-185}	$4.9^{+3.1}_{-2.0}$	$17.9^{+5.3}_{-4.6}$	8.9 ± 0.80

YF, Umetsu, Rasia, Meneghetti, Donahue, Medezinski, Okabe, & Postman (2018)

► Fundamental plane (FP) analysis

- For CLASH clusters
- Data points form a thin plane (FP)
 - $T_{\rm X}$ is strongly correlated to $(r_{\rm s}, M_{\rm s})$
 - $T_{\rm X}$ is also determined by the cluster formation time
 - X-ray sample (Ettori+10) also forms the FP

Cross-section

Plane angle

- Direction of the plane normal P₃
 - The angle is inconsistent with simplified "virial equilibrium", $T_{\rm X} \propto M_{\rm s}/r_{\rm s}$

Numerical simulations

- Radiative cooling + feedback simulations (FB0, FB1) by Rasia et al. (2015)
 - FB1 (z = 1) and FB0 (z = 0) points are on the same plane
 - Clusters evolve along the plane in the direction of P₁ (major axis)
 - The angle is consistent with that of the CLASH
 - FBO plane is almost same as NFO (adiabatic) plane
 - The effects of cooling and feedback are ignorable at $r \sim r_s$ > core radius

Details of cluster evolution

- Clusters move along P₁ ($r_s \propto M_s^{1/2}$)
- Even during major mergers (A, B, E), clusters do not much deviate from the FP
 - $T_{\rm X}$ and $r_{\rm s}$, $M_{\rm s}$ are anti-correlated
 - Contribute to the thinness of the FP

Cluster merger

• $T_{\rm X}$ and $r_{\rm s}$, $M_{\rm s}$ are anti-correlated

- r_s and M_s reflect those for the smaller cluster
- *T*_X increases

Similarity solution

- What makes the strange angle of the plane?
- We attempted to explain it using the similarity solution by Bertschinger (1985)
 - Secondary infall and accretion onto an initially overdense perturbation

Similarity solution and FP

- The similarity solution has an entropy integral $P(\lambda)D(\lambda)^{-\gamma}M(\lambda)^{10/3-3\gamma} = \text{const}$ (Y = 5/3)
 - Nondimensional parameters
 - P: pressure, D: density
 - *M*: mass, λ : radius

 $r_s^2 M_s^{-3/2} T_X = \text{const}$

- Relation among dimensional parameters
- The angle of the plane (SSol) is consistent with observations and simulations

Fujita et al. (2018a)

Similarity sol. vs. conventional model

Conventional spherical collapse model

- It is implicitly assumed that the universe is empty outside the cluster
 - It is not true

Similarity sol. vs. conventional model

• Similarity solution (Bertschinger 1985)

- More realistic than the conventional model
 - The mass and size continue to increase
 - The surface of clusters is affected by the flux of inertia and pressure of infalling materials

Virial theorem

Virial equilibrium

0 = 2 (kinetic/thermal energy) + (potential energy)

Virial theorem

(Change of mass and volume)
= 2 (kinetic/thermal energy) + (potential energy)
+ (surface term)

- Our results indicate that the two green terms cannot be ignored
- Note that hydrostatic equilibrium is well established in the similarity solution

Cluster motion on the FPsecondary infall

• From a scaling relation (Kaiser 1986)

 $r_s \propto M_s^{1/2}$

- Overdense perturbation follows the initial density fluctuations of the universe.
- This direction is the same as P₁ or the direction of cluster evolution shown by simulations
 - Cluster evolution follows the spectrum of the initial density fluctuations of the Universe

FP projected on $r_{\rm s}$ - $M_{\rm s}$

Overdense perturbation

Dispersion of c – M relation

- $c_{\Delta}(M_{\Delta},z)$ - M_{Δ} relation can be converted to M_s - r_s relation (black lines)
- The dispersion of the $c_{\Delta}(M_{\Delta}, z)$ - M_{Δ} relation (dotted and dashed lines) corresponds to the distribution of clusters on the FP and the cluster age

FP projected on r_s - M_s plane

Red dots: MUSIC simulation

Applications of the FP

- Mass-temperature (M-T) relation
 - $M_{\Delta} \propto T_{\rm X}^{-3/2}$ is a good approximation
 - $M_{\Delta} = M(< r_{\Delta})$
 - 3 $M_{\Delta}/(4\pi r_{\Delta}^3) = \Delta \rho_c$
 - ρ_c : critical density of the Univ.
 - $\Delta = 200 \text{ or } 500 \text{ is often used}$

Simulation + Observation

Truong et al. (2018)

Conventional explanation

- Assumptions
 - Clusters are well-virialized and isothermal within r_{Δ}
 - Representative density of clusters is $\rho_{\Delta} \equiv \Delta \rho_c$ (not ρ_s)
 - T_X is primarily determined on a scale of r_{Δ} (not r_s)
- Mass and temperature

 $M_{\Delta} = 4\pi \rho_{\Delta} r_{\Delta}^3 / 3 \qquad \Longrightarrow \qquad M_{\Delta} \propto T_X^{3/2}$ $T_X \propto M_{\Delta} / r_{\Delta} \propto \rho_{\Delta} r_{\Delta}^2 \propto r_{\Delta}^2 \qquad \Longrightarrow \qquad M_{\Delta} \propto T_X^{3/2}$

- However, the assumptions are inconsistent with the "inside-out" scenario
 - The region $r < r_s$ keeps the cluster's old memory
 - Clusters are not well-relaxed (virialized)
 - NFW profile is not an isothermal profile

New interpretation

Fundamental plane

$$T_X = T_{X0} \left(\frac{r_s}{r_{s0}}\right)^{-2} \left(\frac{M_s}{M_{s0}}\right)^{(n+11)/6}$$

n: index of initial density fluctuations

Concentration parameter

$$c_{\Delta}(M_{\Delta}, z) = r_{\Delta}/r_s$$

- The mass dependence can be explained by the inside-out scenario
- We use an analytical form
 - Duffy et al. (2008), Bhattacharya et al. (2013), Dutton & Maccio (2014), Meneghetti et al. (2014), Diemer & Kravtsov (2015)

► *M* – *T* relation

- $r_{\rm s}, M_{\rm s}$ are functions of M_{Δ} and $c_{\Delta}(M_{\Delta},z)$
- M_{Δ} - T_{χ} relation is derived from the FP relation,

$$T_X = T_{X0} \left(\frac{r_s}{r_{s0}}\right)^{-2} \left(\frac{M_s}{M_{s0}}\right)^{(n+11)/6}$$

- $M_{\Delta} \propto T_{\rm X}^{-3/2}$ is well reproduced
 - Virial assumption is not used
 - The dispersion is caused by that of $c_{\Delta}(M_{\Delta},z)\text{-}M_{\Delta}$

Okabe, & Meneghetti (2018)

FP for mass calibration

- FP for the X-ray sample (Ettori+ 10, XFP)
- FP for the CLASH sample (CFP)
 - Their positions are slightly different

Black: XFP Red: CFP Fujita et al. (2018b)

Plane shift

 Systematic difference of r_s and M_s between XFP and CFP can be estimated from the shift of the two FPs

From the observations of the FPs

$$f_{\rm Ms} = M_{\rm sX}/M_{\rm sC} \sim 0.9$$

$$f_{\rm rs} = r_{\rm sX}/r_{\rm sC} \sim 1.1$$

Mass difference

- Assuming the NFW profile, f_{Ms} and f_{rs} can be analytically converted to mass bias $f_{M\Delta}$ = $M_{\Delta X}/M_{\Delta C}$ as a function of $C_{\Delta X}$ or $C_{\Delta C}$
 - $M_{\Delta X}$: M_{Δ} for XFP (M_{Δ} measured in X-rays; hydrostatic mass)
 - $M_{\Delta C}$: M_{Δ} for CFP (M_{Δ} measured by Grav. lensing; lensing mass)
 - Δ = 200, 500, etc
 - $C_{\Delta X}$: concentration parameter for XFP
 - $C_{\Delta C}$: concentration parameter for CFP

Mass difference

•
$$f_{M\Delta} = M_{\Delta X} / M_{\Delta C}$$

- $f_{\rm M\Delta}$ does not much depend on c_{Δ}
 - $f_{\rm MA} \simeq 0.85 \pm 0.2$
 - X-ray (hydrostatic) mass tends to be smaller than Grav. lensing mass
 - Larger samples will allow us to determine $f_{M\Delta}$ more precisely

Summary

- Clusters form a fundamental plane (FP) in the space of (log r_s, log M_s, log T_X)
 - *T*_x is determined by the formation time like *r*_s and *M*_s
- Clusters are growing and not in simplified virial equilibrium
 - Initial collapse and subsequent accretion should be considered separately

Summary

- Mass-temperature relation of clusters can be explained by the FP and the mass dependence of the concentration parameter
- Baseline L_X - T_X relation must be shallower
- FP can be used for mass calibration