

樫山和己(東大RESCEU)

## 今日の内容

- 導入
- •ブラックホール形成と突発天体
- 中性子星形成と突発天体
- ・まとめ



考えること

- どういう星がどういうコンパクト天体を形成?
- 連星系の場合、どういうコンパクト連星?
- •大質量星の回転(進化)は鍵になるだろう.

どういう星がどういうコンパクト天体を形成?



ブラックホールのスピン – 観測

#### e.g., GW 170608 (adLIGO 17)



これまでに見つかったものは全部、 両方のブラックホールがブンブン 回っている感じではなさそう.

電磁波を使う方法もあるけれど (鉄輝線、潮汐破壊、シャドー etc) まだモデルの不定性が大きそう.

大質量星のスピン – 観測

- 測られているのは主に近傍のOB星.
- だいたいみんな結構速く(ケプラーの>10%)回っている.



## 大質量星→BHのスピン-理論

#### •大質量星とそのスピンの進化

- 星風によるloss
- 連星系の場合、連星相互作用によるloss & gain
   が不定性の温床.また、
- ・星内部の角運動量輸送
   もよくわからない….
- 重力崩壊時の角運動量プロファイルがわかれば、 BHのスピンも"大雑把には"わかる.
  - 吹っ飛ぶ角運動量を正確に見積もるのは難しい.

Ex) Stellar evolution calculations of single massive stars with MESA

 $V_{surf, ini} = 200 \text{ km/s}$  $M_{ZAMS} = 20, 40, 60 M_{sun}$  $Z = 1, 0.1, 0.01 Z_{sun}$ 

金属量が多い → 死ぬときにはゆっくり回っている. 右の場合、Z = ZsunはみんなWR星として死ぬ.

金属量が少ない→ 死ぬときも割と速く回っている. 右の場合、Z < 0.1 Zsunは青色、赤色巨星として死ぬ. そのほとんどで(全部落ちたとすると)a<sub>BH</sub> ~ 1. 外層から~太陽質量の降着円盤ができる.

(注)回転星のwind mass lossは不定性がでかい.定量的な議論は….



# Tidal interaction

The convective core + rad. envelope can be locked by the dynamical tide (Zahn 83).



Note: g mode dumping is non-trivial, especially when including the wind mass loss.

## 大質量星→BHのスピン-理論

#### •大質量星とそのスピンの進化

- 星風によるloss
- 連星系の場合、連星相互作用によるloss & gain
   が不定性の温床.また、
- ・星内部の角運動量輸送
   もよくわからない….
- 重力崩壊時の角運動量プロファイルがわかれば、 BHのスピンも大雑把にはわかる.
  - 吹っ飛ぶ角運動量を正確に見積もるのは難しい.

## 考えること

- どういう星がどういうコンパクト天体を形成?
   形成時にどういう突発天体を伴う?
- ・連星系の場合、どういうコンパクト連星?
   合体時にどういう突発天体を伴う?
- 大質量星の回転(進化)が鍵だろう.

• 回転が - 遅い場合 - まあまあ速い場合 - 速い場合



明るいけど少ない?

- ・回転が
  - 遅い場合
  - よあよあ速い場合
  - 速い場合

# Always just vanishing?



## Probably not.



A fraction of outer envelope can be ejected due to a gravitational mass loss of the core through neutrino emission in the proto-NS phase.

## The Nadyozhin effect



A fraction of outer envelope can be ejected due to a gravitational mass loss of the core through neutrino emission in the proto-NS phase.

### Estimate on the "explosion" energy



#### Estimate on the "explosion" energy



$$\Delta E(r) \simeq \frac{1}{2} \operatorname{M_{shell}} v^2 \simeq \alpha \frac{G\delta M_{\rm G}^2}{2r} \frac{H}{r}$$
$$\simeq 5 \times 10^{47} \left(\frac{\alpha}{0.2}\right) \left(\frac{H/r}{0.4}\right) \left(\frac{\delta M_{\rm G}}{0.3 \, M_{\odot}}\right)^2 \left(\frac{2 \times 10^9 \, \mathrm{cm}}{r}\right) \operatorname{erg}$$

#### Mass ejection in failed supernovae



吹っ飛ぶ質量は外側の構造で決まる.

$$\Delta E(r_c) = \int_{M_{\rm cc}-\Delta M}^{M_{\rm cc}} (-e_{\rm tot}) \,\mathrm{d}M$$

#### Hydro sims. of mass ejection in failed SNe



### Mass ejection in failed supernovae



#### Mass ejection in failed supernovae



## Fallback accretion



衝撃波は弱いが長時間の降着ヒストリーへの影響は結構でかい.

#### Luminous red novae from failed SNe

e.g.,  $M_{ZAMS}$  = 25 MsunORSG



## Searching for vanishing RSGs

- Monitoring ~10<sup>6</sup> RSGs in ~25 Gal. within ~10 Mpc with ~0.5 yr cadence for ~5 yrs using the Large Binocular Telescope
- Examine sources with  $\Delta(\nu L_{\nu}) \geq 10^4 L_{\odot}$
- 3 core collapse supernovae
- I candidate of vanishing RSG
- Continuous obs. will give meaningful constraints on failed SN rate.

Kochanek+08, Gerke+15, Adams+17





#### Possible obs. signatures of non-RSG failed SNe

| Model                    | $L_{ m bo} \ (L_{\odot})$ | $t_{ m bo}$ | $v_{ m bo} \ ({ m km~s^{-1}})$ | $T_{ m bo}$ (K) | $L_{ m pl} \ (L_{\odot})$                  | $t_{ m pl}$ (d) | $v_{ m exp}$ (km s <sup>-1</sup> ) |
|--------------------------|---------------------------|-------------|--------------------------------|-----------------|--------------------------------------------|-----------------|------------------------------------|
| B25z00_eHR<br>W40z00_eHR | 2E+8<br>3E+8              | 3h<br>1s    | $900 \\ 12,000$                | 7E+4<br>1E+6    | $\begin{array}{c} 2E+6\\ 5E+4 \end{array}$ | $\frac{20}{2}$  | 600<br>2000                        |

より小さい星からのより速い(とはいえSNよりははるかにしょぼい)衝撃波 →より速くより青い(温度が高い)放射

というか速すぎる?

それでも青色巨星の場合は雲雀、Tomo-e Gozenのターゲットになりそう.

- 回転が
  - 遅い場合
  - よあよあ速い場合
  - めちゃくちゃ速い場合

Ex) Stellar evolution calculations of single massive stars with MESA

 $V_{surf, ini} = 200 \text{ km/s}$  $M_{ZAMS} = 20, 40, 60 M_{sun}$  $Z = 1, 0.1, 0.01 Z_{sun}$ 

金属量が多い → 死ぬときにはゆっくり回っている. 右の場合、Z = ZsunはみんなWR星として死ぬ.

金属量が少ない→ 死ぬときも割と速く回っている. 右の場合、Z < 0.1 Zsunは青色、赤色巨星として死ぬ. そのほとんどで(全部落ちたとすると)a<sub>BH</sub> ~ 1. 外層から~太陽質量の降着円盤ができる.

(注)回転星のwind mass lossは不定性がでかい.定量的な議論は….



# Tidal interaction

The convective core + rad. envelope can be locked by the dynamical tide (Zahn 83).



Note: g mode dumping is non-trivial, especially when including the wind mass loss.

# Mass ejection from a minidisk



KK & Quataert 15 KK, Hotokezaka, Murase 17

### Thermal emission from the outflow



## The PSI-MDS Transients

Pan-STARRS1 Medium Deep Survey (PS1-MDS) for Rapidly Evolving and Luminous Transients Drout+14



- ✓  $t_{1/2}$  < 12 day --- rapidly evolving than any SN type ✓  $L_{peak}$  ~ 10<sup>42-43</sup> erg s<sup>-1</sup> --- luminous as bright SNe ✓  $T_{peak}$  ~ a few 10<sup>4</sup> K --- blue
- ✓ No line blanketing --- not powered by the radioactive decay
- ✓ Host Gal. = star forming Gal. --- related to massive stars
- ✓ Event rate ~ 4-7 % of core-collapse SN --- not rare

## Non-thermal emission from the outflow

+

@



electron acceleration at the forward shock & inverse Compton cooling

$$t \sim t_{\text{peak}} \sim \text{a few days}$$

$$\gamma_{\text{ec}} \sim 47 \left(\frac{T_{\text{peak}}}{10^4 \text{ K}}\right)^{-4} \left(\frac{t_{\text{peak}}}{1 \text{ day}}\right)^{-1}$$

$$L_{\text{IC}}^c \sim \frac{\epsilon_e}{2C} \frac{\dot{M}_w}{v_w} v_{\text{out}}^3$$

$$\sim 6 \times 10^{40} \text{ erg s}^{-1} \epsilon_{e,-1} C_1^{-1} \dot{M}_{w,-5} v_{w,8}^{-1} v_{\text{out},10}^3$$

$$\varepsilon_{\text{IC}} \approx 2k_{\text{B}} T_{\text{peak}} \gamma_{\text{e}}^2 \sim 1.5 \text{ keV } \left(\frac{\gamma_{\text{e}}}{30}\right)^2 \left(\frac{T_{\text{peak}}}{10^4 \text{ K}}\right)$$

The IC X-ray flares are detectable by e.g., Swift XRT from ~ 100 Mpc.

## Non-thermal emission from the outflow



**Radio Afterglow** 



The radio afterglow are detectable by e.g., VLA from a few 100 Mpc.







KK, Hotokezaka, Murase 17



KK, Hotokezaka, Murase 17





KK, Hotokezaka, Murase 17





might have been already detected as a possible new class of radio transients, e.g., Cyg A-2



### Competitive sources & future obs.



# Weak explosion + (mini)disk



## Disk-wind powered supernovae



Dexter & Kasen 13

#### Creepy transients powered by zombie stars?

OGLE-2014-SN-073 "The brightest H-rich SN"

#### iPTF14hls



Terreran et al. 17

Arcavi et al. 17

- 回転が
  - 遅い場合
  - まあまあ速い場合、特に連星系 - めちゃくちゃ速い場合

#### Either

or



Kimura, Murase, Meszaros 17

- 回転が
  - 遅い場合
  - よあよあ速い場合
  - めちゃくちゃ速い場合

- 回転が
  - 遅い場合
  - よあよあ速い場合
  - めちゃくちゃ速い場合

この会議の本題、GRBを作るくらい. たぶんコアから降着円盤が作られるくらい.

そもそもどうやってそんな速く回すのか?

とかその辺を衣川くんが話す(ことになっているはず).

## 今日のまとめ

#### • ブラックホール形成に伴う突発天体

- 回転が遅い場合
  - RSG luminous rednovae? ← vanishing star search
  - BSG, WR sub-day blue transients? ← Tomo-e Gozen etc?
- まあまあ速い場合
  - RSG disk-wind powered SNe?  $\leftarrow$  conventional SN search
  - BSG, WR fast blue transients? ← high-cadence SN search
- めちゃくちゃ速い場合
  - RSG failed jet & disk-wind powered SNe?
  - BSG ultra-long GRBs?
  - WR long GRBs
- 多波長の理論モデル、フォローアップ観測が重要

# appendix

### Mass ejection in failed supernovae

| Model          | $\Delta r/r \ (\%)$ | $\nu$ -loss | $	au_c (\mathrm{s})$ | $	au_{ m tov} \ ({ m s})$ | $\delta M_{ m G} \ (M_{\odot})$ | $M_{ m ej} \ (M_{\odot})$ | $\begin{array}{c} E_{\rm ej} \\ (10^{47} \ {\rm erg}) \end{array}$ | $\frac{E_{\rm k,max}}{(10^{47} \text{ erg})}$ | $r_c$ (10 <sup>9</sup> cm) | $\frac{\Delta E(r_c)}{(10^{47} \text{ erg})}$ | $\Delta M \ (M_{\odot})$ |
|----------------|---------------------|-------------|----------------------|---------------------------|---------------------------------|---------------------------|--------------------------------------------------------------------|-----------------------------------------------|----------------------------|-----------------------------------------------|--------------------------|
| R15z00_e       | 0.9                 | $\exp$      | 3                    | 6.1                       | 0.30                            | 4.2                       | 1.5                                                                | 4.7                                           | 1.5                        | 2.9                                           | 4.8                      |
| B25z00_e       |                     |             |                      | 3.1                       | 0.24                            | 4.9E-2                    | 1.5                                                                | 4.5                                           | 1.7                        | 4.8                                           | 0.13                     |
| W40z00_e       |                     |             |                      | 2.6                       | 0.22                            | 5.0E-4                    | 0.23                                                               | 3.5                                           | 1.5                        | 4.2                                           | 3E-3                     |
| $R15z00_{e}HR$ | 0.45                | $\exp$      | 3                    | 6.1                       | 0.30                            | 4.2                       | 1.9                                                                | 4.5                                           | 1.5                        | 2.9                                           | 4.8                      |
| $B25z00_{e}HR$ |                     |             |                      | 3.1                       | 0.24                            | 4.9E-2                    | 1.6                                                                | 4.4                                           | 1.7                        | 4.8                                           | 0.13                     |
| $W40z00_{e}HR$ |                     |             |                      | 2.6                       | 0.22                            | 5.0E-4                    | 0.25                                                               | 3.4                                           | 1.5                        | 4.2                                           | 3E-3                     |
| $R12z00_e$     | 0.9                 | $\exp$      | 3                    | 21                        | 0.30                            | 5.5                       | 1.8                                                                | 3.9                                           | 1.4                        | 1.5                                           | 5.6                      |
| Y22z00_e       |                     |             |                      | 1.1                       | 0.12                            |                           |                                                                    | 0.4                                           | 0.8                        | 1.8                                           | 1.2                      |
| Y25z-2_e       |                     |             |                      | 5.3                       | 0.30                            | 2.5                       | -1.0                                                               | 8.1                                           | 1.5                        | 8.7                                           | 11                       |
| B30z-2_e       |                     |             |                      | 4                         | 0.30                            | 0.2                       | 1.4                                                                | 10                                            | 1.6                        | 9.3                                           | 0.85                     |
| B80z-2_e       |                     |             |                      | 0.2                       | 0.03                            |                           |                                                                    | 0.03                                          | 0.23                       | 0.38                                          | 0.01                     |
| W26z00_e       |                     |             |                      | 6.8                       | 0.30                            | 8.1E-3                    | 2.6                                                                | 10                                            | 1.5                        | 9.3                                           | 0.02                     |
| $W50z00_e$     |                     |             |                      | 1.2                       | 0.13                            | 5.7 E-5                   | 0.02                                                               | 0.63                                          | 0.9                        | 1.9                                           | 2E-3                     |
| R15z00_f       | 0.9                 | full        | 3                    | 8.0                       | 0.47                            | 4.6                       | 8.8                                                                | 12                                            | 1.5                        | 7.4                                           | 4.8                      |
| B25z00_f       |                     |             |                      | 4.2                       | 0.43                            | 0.11                      | 9.1                                                                | 18                                            | 1.7                        | 16                                            | 0.20                     |
| W40z00_f       |                     |             |                      | 3.6                       | 0.42                            | 4.9E-3                    | 3.0                                                                | 17                                            | 1.7                        | 13                                            | 9E-3                     |
| B80z-2_f       |                     |             |                      | 0.4                       | 0.04                            |                           |                                                                    | 0.05                                          | 0.42                       | 0.63                                          | 0.02                     |
| R15z00_m       | 0.9                 | max         | 3                    | 8.4                       | 0.49                            | 4.6                       | 13                                                                 | 17                                            | 1.5                        | 8.1                                           | 4.8                      |
| B25z00_m       |                     |             |                      | 3.7                       | 0.37                            | 9.5E-2                    | 7.0                                                                | 15                                            | 1.7                        | 12                                            | 0.18                     |
| W40z00_m       |                     |             |                      | 3.0                       | 0.33                            | 2.6E-3                    | 1.5                                                                | 11                                            | 1.7                        | 8.0                                           | 6E-3                     |