光球面放射の数値シミュレーションから明らかにする米徳関係の起源

Hirotaka Ito RIKEN

Collaborators

Jin Matsumoto (Leeds Univ.) Shigehiro Nagataki (RIKEN) Don Warren (RIKEN) Maxim Barkov (Perdue Univ.) Daisuke Yonetoku (Kanazawa Univ.)

@ガンマ線バースト研究の新機軸, 宇宙線研究所 2017/11/22

Yonetoku Relation Tight correlation between E_p - L_p

Photospheric Emission in GRB jet

Dynamics of Jet have significant effect on the radiation signature

<u>Dynamics</u> of Jet and <u>Radiation transfer</u> must be solved

Previous Studies

steady outflow or 1D model

Pe'er +2005,2006,2011; Giannios 2008; Beloborodov 2010,2011; Vurm+2011,2016; Lundman+2013,2014, Ito+2013,2014, Chhotray 2015

approximated treatment for radiation

Lazzati+2009,2011,2013; Mizuta+2011;Nagakura+2011; Lopez-Camara+2014

This Study

Radiation transfer calculation based on 3D hydrodynamical simulation

See also Lazzati 2016, Parsotan + 2017

3D relativisitic hydrodymaical simulation

Calculation of relativistic jet breaking out of massive progenitor star

Radiative transfer calculation

Propagation of photons are calculated until they reach optically thin region

fiducial model $L_j = 10^{50} \text{ erg/s}$

fiducial model $L_j = 10^{50} \text{ erg/s}$

fiducial model $L_i = 10^{50} \text{ erg/s}$

 E_{p} & L_{p} decline as Θ_{obs} increases

Dependence on jet power

Ito + 2017, submitted

L_p & E_p are systematically higher for higher L_j

Yonetoku relation

Evidence of photospheric emission as dominant radiation process

Origin of viewing angle dependence

Lateral structure developed during propagation

Time resolved Yonetoku relation

Yonetoku Relation holds regardless of the time interval

Ito + 2017 in prep.

Summary

- Jet structure developed during propagation causes notable time variability
- Central engine activity can be directly observed in the light curve engine activity is not smeared out during the propagation
- Structure of jet broadens the thermal spectrum multi-color effect, bulk Comptonization at shock possible origin of Band spectrum
- Yonetoku relation is an inherent feature of phosphoric emission
 This relation holds regardless of the jet power evidence of photosphric emission as a dominant radiation mechanism
- Prediction of high polarization at large viewing angle