

Energy Sources

Rotation energy:

$$\sim 10^{53} \left(\frac{M_{\rm BH}}{3M_{\odot}} \right) \text{ erg} \quad (a/M_{\rm BH} = 0.5)$$

Disk gravitational energy:

• Radioactivity:

$$\sim 10^{49} \left(\frac{\epsilon}{10^{-3}}\right) \left(\frac{M_{\rm ej}}{10^{-2} M_{\odot}}\right) \ {\rm erg}$$

• <u>Magnetic field:</u> $\sim 10^{48} \left(\frac{B}{10^{15} \text{G}}\right)^2 \text{ erg}$

Metzger & Berger 12

EM Counterparts

• Gamma-ray Burst

t < 10⁶ s Rotation/disk grav. energies

- **Macronova/Kilonova** t ~ 10 day Radioactivity (?)
- Remnant of Merger Ejecta t ~ yr Ejecta kinetic energy
- Others

Gamma-ray Burst

Short Gamma-Ray Bursts (GRBs)

- Total energy : $\sim 10^{50} 10^{51}$ erg (isotropic)
- <u>Duration</u> : $\sim 10^{-2} 2 \sec$
- Event rate : $\sim 10 \text{ Gpc}^{-3} \text{ yr}^{-1}$ (observed; Nakar+ 06)
- <u>Jet-like outflow</u> (opening angle ~5-10°; Fong+14)

Plateau emission : $L \sim 10^{45}-10^{47}$ erg/s, $T \sim 10^{3} - 10^{4}$ s Extended emission : $L \sim 10^{48}-10^{49}$ erg/s, $T \sim 10^{2}$ s

Luminosity and Duration

Plateau emission : $L \sim 10^{45}$ - 10^{47} erg/s, $T \sim 10^{3} - 10^{4}$ s Extended emission : $L \sim 10^{48}$ - 10^{49} erg/s, $T \sim 10^{2}$ s

Current Detectors

Planed Detectors

Scattering

- Emission region locates inside the ejecta, $r_e < r$.
- Optical depth $\tau >> 1$.

Optical depth

$$\tau \sim 10^2 \left(\frac{t}{10^4 \text{s}}\right)^{-2} \left(\frac{\bar{A}}{10^2}\right)^{-1} \left(\frac{M_{\text{ej}}}{10^{-2} M_{\odot}}\right) \left(\frac{v}{0.1c}\right)^{-2}$$

SK, loka & Nakamura 15

cf. $\epsilon \sim 3 \times 10^{-5} - 3 \times 10^{-4}$ (Eichler & Levinson 99)

Observation strategies

- <u>ISS-Lobster WFI</u>: 900 deg² \Rightarrow Pointing to the error box
- <u>Einstein Probe WXT</u>: 3,600 deg² \Rightarrow Pointing to the error box

GW error box: $\sim 100 \text{ deg}^2$ N_{gal}(< 100 Mpc) ~ 100

• <u>Swift XRT</u>: 0.16 deg²

 \Rightarrow Pointing to the galaxies within 100 Mpc

• <u>NICER</u>: 0.008 deg²

 \Rightarrow Pointing to the galaxies within 200 Mpc

Long-Lasting Component <u>The long-lasting mysterious X-ray component</u>

(Fong+ 14)

Activity of central engine ~10 days ?

Long-Lasting Component

The long-lasting mysterious X-ray component

(Fong+ 14)

Activity of central engine ~10 days ?

Detectability

Long-Lasting component can be detectable by Swift/XRT.

Macronova

Macronova Candidate

r-process Heating Model <u>Nuclear heating rate</u>

r-process Heating Model

Shock Heating Injection energy

the UK Swift Science Data Centre

SK, loka & Takami 15

Adiabatic Cooling <u>Luminosity</u>: L~ E_{int}/t , $E_{int} \propto r^{-1}$ Homologous expansion $r \sim vt$ $L \sim \frac{E_{\rm int0}}{t} \left(\frac{t}{t_{\rm int}}\right)^{-1}$ $\sim 10^{41} \left(\frac{E_{\rm int0}}{10^{49} {\rm erg}} \right) \left(\frac{t_{\rm inj}}{10^4 {\rm s}} \right) \left(\frac{t}{10^6 {\rm s}} \right)^{-2} {\rm erg \ s}^{-1}$ Temperature: $T \propto r^{-1}$ $T \sim T_0 \left(\frac{t}{t_{\rm ini}}\right)^{-1}$ $\sim 2 \times 10^3 \left(\frac{E_{\rm int0}}{10^{49} {\rm erg}}\right)^{1/4} \left(\frac{t_{\rm inj}}{10^4 {\rm s}}\right)^{1/4}$ $\times \left(\frac{v}{10^{10} \, \mathrm{cm} \, \mathrm{c}^{-1}}\right)^{-3/4} \left(\frac{t}{10^{6} \, \mathrm{c}}\right)^{-1} \mathrm{K}$

Macronova Light Curve

SK, loka & Nakamura 15

Allowed Parameter Region

The required mass ($\sim 0.02 M_{\odot}$) is comparable to NS-NS merger (e.g., Hotokezaka+ 13).

X-ray-powered Macronova The merger ejecta heated by the irradiation of X-ray emit thermal infrared radiation.

Physical setups

- Isotropic X-rays are generated near the central source.
- The ejecta cover a fraction of solid angle.
- The line-of-sight to the source is clean for the observers.

X-ray-powered Macronova The merger ejecta heated by the irradiation of X-ray emit thermal infrared radiation.

Required conditions

- Absorption of X-ray photons $\tau_X > 1$
- Thermalization $\tau_{IR} > 1$
- Escaping thermal photons
 t_{diff} < t
- Temperature T < T_{max}

Results

Broad ranges of the allowed parameter regions

Other Macronova Candidate

Other Macronova Candidate

Summary

Gamma-ray Burst

Scattering produces isotropic emission which can be detectable by current and planed detectors. Macronova

Engine-powered model explains IR excess and allow for broader parameter region even if the ejecta are composed of iron.