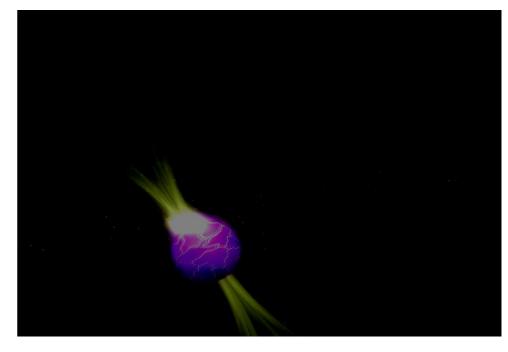
High-Energy Emission from SGR 1806-20 Conor Omand^{1,2}

Jeremy Heyl¹

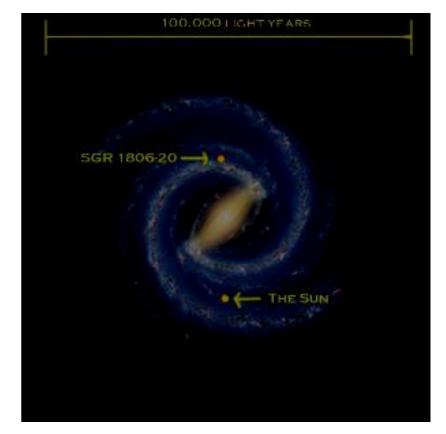

Illaria Caiazzo¹

Chris Elenbaas³

Anna Watts³

¹University of British Columbia ²University of Tokyo

³University of Amsterdam



http://blogs.discovermagazine.com/badastronomy/2009/12/27/ anniversary-of-a-cosmic-blast/#.V_OBS7UvBCU

11/10/2016

Basic Info

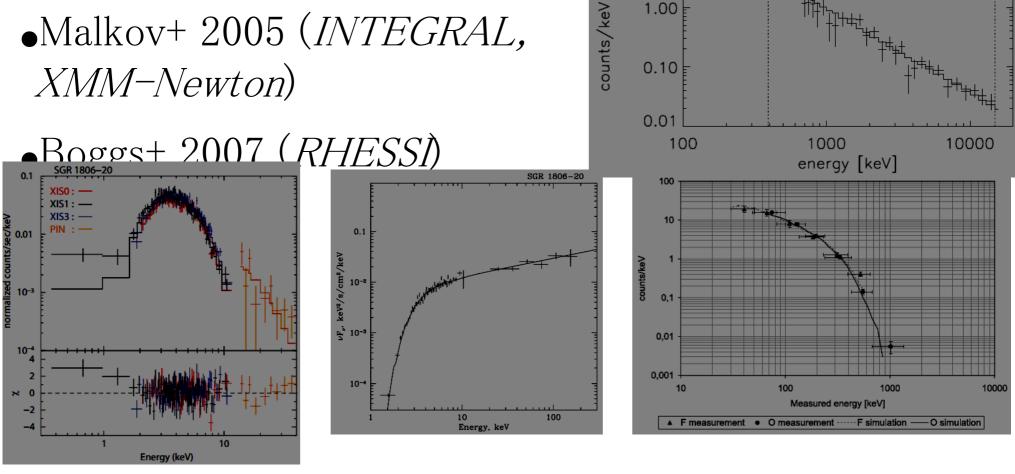
- •Discovered in 1979
- •RA: 18.13h, Dec: -20.40°
- •Most magnetized object discovered (B $^{\sim}$ 10¹⁵ G)
- \bullet Has undergone > 70 flares
- •Hyperflare detected on Dec. 27/2004

http://blogs.discovermagazine.com/badastronomy/2009/12/27/ anniversary-of-a-cosmic-blast/#.V_OBS7UvBCU

•Both thermal and non-thermal emission detected High Energy Phenomena in Astrophysical Objects

Measured Spectra

100.00


10.00

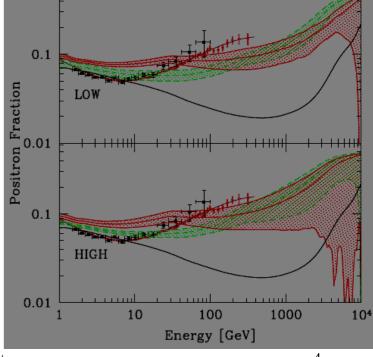
1.00

0.10

[1/keV]

- •Nakagawa+ 2009 (*Suzaku*)
- •Malkov+ 2005 (INTEGRAL, XMM-Newton)

11/10/2016


High Energy Phenomena in Astrophysical Objects

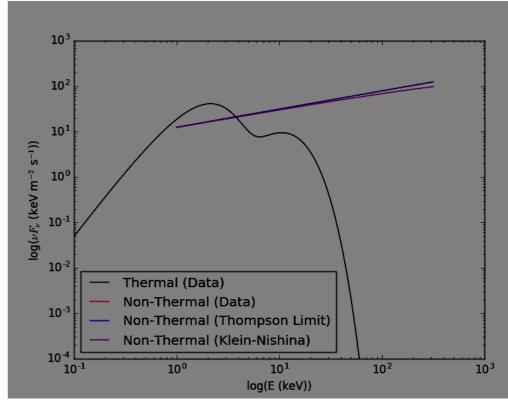
Project Idea

•Figure out what's causing non-thermal emission, electron acceleration

•Compare to fireball model (Thompson and Duncan)

•Long term goal: Determine role of magnetars in the excess production of positrons in cosmic rays

Heyl, J., Gill R., and Hernquist L.. "Cosmic rays from pulsars and magnetars." MNRAS 406.1 (2010): L25-L29.


High Energy Phenomena in Astrophysical Objects

Quiescent ICS

•Calculate the electron distribution using ICS and the thermal/non-thermal data

•N(E) =
$$N_e \gamma^{-\Gamma}$$

N_e = 8.56 X 10²⁷ m⁻²
 Γ = 3.2

•Adding KN makes factor of two difference at 200 keV

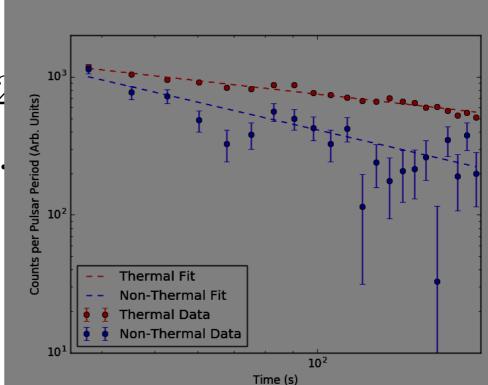


Flare ICS

•Use electrons from quiescence at first, non-thermal emission is soft

- •e⁻ spectrum needs index 1.05 to fit - unphysical
- •Cooling time in these situations is $^{\sim}$ 1 ms

•Conclusion: It isn't ICS


If not ICS, then:

- •RICS
 - -No. Cooling time is still too low (R/c).
- •Synchotron
 - Maybe. Electron spectrum would have same index as Thompson ICS (~ 3), energetics need to be checked.

Timescale

•Power Law Index:

- Thermal: -0.442 ± 0.002
- -Non-thermal: -0.91 ± 0 .
- Factor of two implies shock – seed photons and electrons decay at same rate (were accelerated together)

To do list:

- $\bullet Test$ synchrotron
 - Spectral properties looks good, but is there enough energy?
- •Put constraints on location
 - Cooling time should be able to constrain the electron location
- •Examine Polarization (another paper)
 - In progress, but slow

Summary

- •Non-thermal radiation from 2004 hyperflare
 - -Not caused by ICS (not enough energy, too soft)
 - Likely synchrotron
- •Thermal photons and electrons accelerated by a shock
- •Still lots to be done on the hyperflare