パルサー星雲からの 高エネルギー放射の 一次元モデル

22, Aug., 2013, 中間発表会@宇宙線研究所乗鞍観測所

Introduction to

PWN (Pulsar wind nebula)

Line emission (SN ejecta)

Crab (radio - X-ray) **Non-thermal** (Pulsar wind)

Confined by SNR Powered by PSR

We reproduced

- Total spectrum @ 1kyr
- Flux decrease rate ~0.2%/year @ radio

We obtain

- mean B-field inside PWN.
- particle energy & number inside PWN.
- magnetization at injection.
- particle injection spectrum (broken PL).
- spin evolution of the central PSR.

Bright and extended object

 Brightness map in different frequencies of the Crab. **Bietenholz+04ApJ** Temim+06ApJ Mori+04ApJ (X-(radio) **(IR)** ray)

Spectral index map in different frequencies of the Crab.

Bietenholz+97ApJ (radio)

Temim+12ApJ **(IR)**

PWN emission reflects B-field & particle distribution of PWN

2-1: Qualitative Description PWN is powered by central pulsar

Young PWNe are almost spherical. (Whole particles are confined within SNR)

Motivation

What do we learn from observations of the Crab Nebula?

PSR & PWN properties

- Magnetization of pulsar wind. $\rightarrow \sigma$ -problem
- Injection spectrum of particles. $\rightarrow \kappa$ -problem & particle acceleration
- e^{\pm} escaping process from PWN. \rightarrow PAMELA anomaly

Physics

- Particle transport mechanism inside PWN. \rightarrow advection? diffusion? Particle acceleration process inside PWN.
 -> second-order acceleration?
- Expansion of PWN. → Interaction between PWN & SNR at outer boundary.

Past Studies

Amato+00, advection only Radio brightness map

Reynolds03, advection only X-ray spectral index map

Tang & Chevalier 12, diffusion optical spectral index map

Model

Transport Equation $\frac{\partial f}{\partial t} = -\boldsymbol{\nabla} \cdot \left[(\boldsymbol{v} - K\boldsymbol{\nabla})f \right] + \frac{1}{p^2} \frac{\partial}{\partial p} \left[\left(\frac{1}{3} \right) \right]$

Radial flow & toroidal B-field + induction equation

$$\boldsymbol{v}(r) = v_0 \left(\frac{r}{r_0}\right)^{-\alpha_v} \boldsymbol{e}_r, \ \boldsymbol{B}(r, t_{\text{inj}}) = B(t_{\text{inj}}) \left(\frac{r}{r_0}\right)^{-\alpha_B} \boldsymbol{e}_{\varphi},$$

$\frac{\partial \boldsymbol{B}}{\partial t} = \boldsymbol{\nabla} \times (\boldsymbol{v} \times \boldsymbol{B})$ **Bohm-type diffusion & particle injection**

$$K = \frac{1}{3}\xi cr_{\text{gyro}} \qquad Q_{\text{inj}}(r,t,p) = q(t)\frac{\delta(r-t)}{4\pi}$$

We take into account the evolution of the spindown luminosity (injection) & the R_{PWN} (expansion).

$$\left[\nabla \cdot \boldsymbol{v} + (\beta_{\text{syn}} + \beta_{\text{IC}}) p^3 f \right] + Q_{\text{inj}}$$

 $\frac{-r_0}{\pi r_0^2} \times \begin{cases} (p/p_b)^{2-p_1} & \text{for } p_{\min} \le p \le p_b ,\\ (p/p_b)^{2-p_2} & \text{for } p_b \le p \le p_{\max} , \end{cases}$

Application to the Crab Nebula

We consider that the particles and the magnetic field are injected at the inner radius $r = r_0$ at a time

- $t = t_{in,i}$ Main parameters are 1. gyro-factor ξ ,
- 2. inner radius r_0 or velocity profile index α_v , R_{PWN} = 2.0pc, V_{PWN} = 1.500km/s @ t_{age} = 1kyr (r0 = 0.1pc & v0 = c/3 are too much.)
- 3. injected B-field or magnetization σ $BO = 300 \mu G$
- 4. broken power-law injection with $p_1 = 1.5, p_2 = 2.5, \gamma_{min} = 10^2, \gamma = 10^6, \gamma_{max} = 10^9$

Results: Particle

1. strong adiabatic cooling for $r_0 = 0.007pc$.

2. When ξ is non-zero, e[±] can escape from PWN (r >> R_{PWN}).

3. Escaped high energy e[±] are cooled slowly.

4. For $r_0 = 0.007pc$, because r_0 is smaller than diffusion length for high energy e[±], more particles can escape than for $r_0 =$ 0.2pc, mostly in an early phase of evolution.

Results: Spectral Index Profile

with diffusion ($\xi = 1$) without diffusion $p_1 = 1.5 \& p_2 = 2.5$ corresponds $\alpha = 0.25 \& 0.75$

1. Without diffusion, we find synchrotron cooling effect ir creases spectral index at 10^{16} Hz > 10 at $100r_0 \sim 0.7$ pc. 2. Diffusion effect smooths spectral index profile and we do not find synchrotron cooling hardening of the spectrum for $E_0 = 100 \,\mu$ G. We need to select appropriate parameter set of (ξ, B_0) to fit the spectral index distribution. **3.** $\alpha = 1/3$ corresponds to low freq. side of synchrotron spectra and is appeared at r > Round @ < 10¹⁶Hz.

Conclusion

 Convection-Diffusion transport equation is considered to study the broadband emission structure of PWNe.

• For the escaping of e^{\pm} from PWNe, we should compare diffusion length & r0.

• γ -ray distribution almost traces the particle distribution for inverse Compton scattering off CMB.

 Synchrotron Self-Compton process is considered to be dominated in the Crab Nebula in γ -rays and should be considered the future work.

• We need larger value of B-field at injection point, to obtain softer spectra observed for many PWNe in X-rays (α > 2).