Current Status of TAMA300

Shigeo Nagano and TAMA Collaboration

3rd TAMA Symposium @ICRR

Outline

- 1. Overview of TAMA300
- 2. Power-recycling experiment
- 3. Data taking 7
- 4. Summary

Outline

1. Overview of TAMA300

- 2. Power-recycling experiment
- 3. Data taking 7
- 4. Summary

TAMA300 Gravitational wave detector

Laser interferometer with arm length of 300m

Site: National Astronomical Observatory of Japan (Mitaka, Tokyo)

Aims of the project

Development of a detector capable to detect GW events in nearby galaxies.

Establishment of techniques for a future km-class interferometer

Designed sensitivity

 $h = 1.7 \times 10^{-22} / sqrtHz$ (@150~450Hz)

Bird's-eye view of TAMA300

National Astronomical Observatory of Japan Tokyo, Mitaka Campus (E139.32.21 N35.40.25)

TAMA300 detector ~ overview

Center Room Building of TAMA300

300m vacuum tube

10-W Injection-Locked LD-pumped Nd:YAG Laser

Output power 9.5W, when pumping power is 24W Slope efficiency 44 %

Wavelength 1064nm

Single frequency oscillation

TEM₀₀-mode M^2 value < 1.2

End-pumping scheme

Developed by SONY corporation

10-m Ring-type Mode Cleaner

Round trip length 19.7m Finesse 1860 Cavity linewidth 8.2kHz Vibration Isolation Stack + double pendulum Pressure 10⁻⁵ Pa **Dielectric multi-layer coarting** (JAE corporation) Mirror substrate fused silica

Vibration Isolation System

• 3 layer system Actively-controlled air spring **Stack** (Sandwitches of rubbers and metal blocks) Double pendulum suspension

Achieved performance ~ better than 10⁻⁸ at 150Hz

Mirror

High mechanical quality ~ to suppress thermal vibration in the observation band

High optical quality
~ ultra low loss (~30ppm)
in reflection.

Automation of detector operation

Hardware: PC + PCI board (National Instruments 6025E, 6711) Digital switch: 24ch, Digital I/O: 16ch, A/D: 8ch, D/A: 6ch

Software: National Instruments LabVIEW

Outline

- 1. Overview of TAMA300
- 2. Power-recycling experiment
- 3. Data taking 7
- 4. Summary

Power recycling for TAMA300

Recycling experiment began in October, 2001.

Purpose

To improve SNR to NS binaries

To integrate the technical achievement of the R&Ds.

Present Status

Full lock has been achieved.

Recycling gain ~ 4 (design: 4.6)

Continuous lock more than 8 hours

Length control with the frontal modulation scheme

Alignment control for the test masses

Power recycling technique

Enhancing light power in the interferometer

->Shot noise level can be decreased.

Power recycling for TAMA300

Recycling experiment began in October, 2001.

Purpose

To improve SNR to NS binaries

To integrate the technical achievement of the R&Ds.

Present Status

Full lock has been achieved.

Recycling gain ~ 4 (design: 4.6)

Continuous lock more than 8 hours

Length control with the frontal modulation scheme

Alignment control for the test masses

Purpose

Scientific motivation

To perform observation with improved SNR to NS binaries

1st step: Low gain recycling (RRM~48%, G~4.6)

Goal: Faster realisation of the full locking

Earlier full operation and observations.

Feeding back the information to the design of high gain recycling.

Establishing techniques for diagnoses and analysis.

2nd step: High gain recycling (RRM~90%, G~10)

Goal: Optimizing the detector performance

Power recycling R&Ds in Japan

3m Prototype in Tokyo Univ. (Gachieved: 2.9~5.5)
Demonstration of recycling with suspended FPMI^{*1}
Investigation of the length sensing & control scheme Sideband elimination technique ^{*2,3}
3rd harmonic demodulation technique ^{*4}
20m Prototype in NAO (Gachieved: 8~12)

Evaluation of the TAMA optics^{*5}

Investigation of the length sensing & control scheme for high recycling gain

*1 M. Ando, et al, Phys. Lett. A 248 (1998) 145 *2 M. Ando, et al, Phys. Lett. A 237 (1997) 13

- *3 M. Ando, et al, Phys. Lett. A 268 (2000) 268
- *4 K. Arai, et al, Phys. Lett. A 273 (2000) 15
- * R. Aldi, et al, Fliys. Lett. A 275 (2000) 15

*5 S. Sato, et al, Appl. Opt. 39 (2000) 25, 4616

Power recycling for TAMA300

Recycling experiment began in October, 2001.

Purpose

To improve SNR to NS binaries

To integrate the technical achievement of the R&Ds.

Present Status

Full lock has been achieved.

Recycling gain ~ 4 (design: 4.6)

Continuous lock more than 8 hours

Length control with the frontal modulation scheme

Alignment control for the test masses

Control topology

Expected SNR to inspirals

• Observable distance with SNR=10 using matched filtering

Estimation of noise contributions

Noise estimation based on signal injection

Stability

Recycling also increases complication of the system

Internal power becomes sensitive to mirror motions

Longest continuous operation

with power recycling: 8h 38m (without power recycling: 24h 50m)

Outline

- 1. Overview of TAMA300
- 2. Power-recycling experiment
- 3. Data taking 7
- 4. Summary

Data Taking 7

Period: 2002/08/31~2002/09/02 (32 hours)

->First observation run after installing power recycling mirror.

LIGO S1 (2002/08/23~09/02)

- LIGO (USA, Hanford: 4km, 2km, Livingstom: 4km)
- GEO (Germany, Hannover: 600m)

->5 detectors were operated with comparable sensitivity.

Data Taking 7

Period: 2002/08/31~2002/09/02 (32 hours)

3rd TAMA Symposium @ICRR

Results of Data taking 7

Total observation time: 24 hours 34 min. (Duty cycle: 76.7%) Best sensitivity: $h = 3.3 \times 10^{-21}$ /sqrtHz @1kHz Longest locking stretch: 8 hours 38 min.

Outline

- 1. Overview of TAMA300
- 2. Power-recycling experiment
- 3. Data taking 7
- 4. Summary

Summary

Power-recycling experiment

- Full lock has been achieved. (Recycling gain ~ 4)
 - ->Improvement of the sensitivity: h=3.3 x 10⁻²¹ /sqrtHz @1.5kHz

->Continuous locking: 8 hours 38 min.

- Data taking 7 (2002/08/31~2002/09/02)
 - First observation run with power recycling.

->Total observation time: 24 hours 34 min. (Duty cycle: 76.7%) Coincidence run with LIGO and GEO

- 5 detectors were operated with comparable sensitivity.
 - ->Common lock of 5 detectors: 9 hours 50 min.

->Longest common lock stretch: 2 hours 24 min.

Summary

Power-recycling experiment

- Full lock has been achieved. (Recycling gain ~ 4)
 - ->Improvement of the sensitivity: h=3.3 x 10⁻²¹ /sqrtHz @1.5kHz

->Continuous locking: 8 hours 38 min.

- Data taking 7 (2002/08/31~2002/09/02)
 - First observation run with power recycling.

->Total observation time: 24 hours 34 min. (Duty cycle: 76.7%) Coincidence run with LIGO and GEO

5 detectors were operated with comparable sensitivity.

->Common lock of 5 detectors: 9 hours 50 min.

->Longest common lock stretch: 2 hours 24 min.

Future plan

Continue to improve the detector performance

Coincidence observation with LIGO and GEO

(2003/02/14~2003/04/14)

Outline

- 1. Overview of TAMA300
- 2. Power-recycling experiment
- 3. Data taking 7
- 4. Summary